{"title":"投资组合预期优化的情景聚合方法","authors":"E. Jakobsons","doi":"10.1515/strm-2016-0008","DOIUrl":null,"url":null,"abstract":"Abstract The statistical functional expectile has recently attracted the attention of researchers in the area of risk management, because it is the only risk measure that is both coherent and elicitable. In this article, we consider the portfolio optimization problem with an expectile objective. Portfolio optimization problems corresponding to other risk measures are often solved by formulating a linear program (LP) that is based on a sample of asset returns. We derive three different LP formulations for the portfolio expectile optimization problem, which can be considered as counterparts to the LP formulations for the Conditional Value-at-Risk (CVaR) objective in the works of Rockafellar and Uryasev [43], Ogryczak and Śliwiński [41] and Espinoza and Moreno [21]. When the LPs are based on a simulated sample of the true (assumed continuous) asset returns distribution, the portfolios obtained from the LPs are only approximately optimal. We conduct a numerical case study estimating the suboptimality of the approximate portfolios depending on the sample size, number of assets, and tail-heaviness of the asset returns distribution. Further, the computation times using the three LP formulations are analyzed, showing that the formulation that is based on a scenario aggregation approach is considerably faster than the two alternatives.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2016-0008","citationCount":"11","resultStr":"{\"title\":\"Scenario aggregation method for portfolio expectile optimization\",\"authors\":\"E. Jakobsons\",\"doi\":\"10.1515/strm-2016-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The statistical functional expectile has recently attracted the attention of researchers in the area of risk management, because it is the only risk measure that is both coherent and elicitable. In this article, we consider the portfolio optimization problem with an expectile objective. Portfolio optimization problems corresponding to other risk measures are often solved by formulating a linear program (LP) that is based on a sample of asset returns. We derive three different LP formulations for the portfolio expectile optimization problem, which can be considered as counterparts to the LP formulations for the Conditional Value-at-Risk (CVaR) objective in the works of Rockafellar and Uryasev [43], Ogryczak and Śliwiński [41] and Espinoza and Moreno [21]. When the LPs are based on a simulated sample of the true (assumed continuous) asset returns distribution, the portfolios obtained from the LPs are only approximately optimal. We conduct a numerical case study estimating the suboptimality of the approximate portfolios depending on the sample size, number of assets, and tail-heaviness of the asset returns distribution. Further, the computation times using the three LP formulations are analyzed, showing that the formulation that is based on a scenario aggregation approach is considerably faster than the two alternatives.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2016-0008\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2016-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2016-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Scenario aggregation method for portfolio expectile optimization
Abstract The statistical functional expectile has recently attracted the attention of researchers in the area of risk management, because it is the only risk measure that is both coherent and elicitable. In this article, we consider the portfolio optimization problem with an expectile objective. Portfolio optimization problems corresponding to other risk measures are often solved by formulating a linear program (LP) that is based on a sample of asset returns. We derive three different LP formulations for the portfolio expectile optimization problem, which can be considered as counterparts to the LP formulations for the Conditional Value-at-Risk (CVaR) objective in the works of Rockafellar and Uryasev [43], Ogryczak and Śliwiński [41] and Espinoza and Moreno [21]. When the LPs are based on a simulated sample of the true (assumed continuous) asset returns distribution, the portfolios obtained from the LPs are only approximately optimal. We conduct a numerical case study estimating the suboptimality of the approximate portfolios depending on the sample size, number of assets, and tail-heaviness of the asset returns distribution. Further, the computation times using the three LP formulations are analyzed, showing that the formulation that is based on a scenario aggregation approach is considerably faster than the two alternatives.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.