{"title":"异质性对群集行为和系统性风险的影响","authors":"Fei Fang, Yiwei Sun, K. Spiliopoulos","doi":"10.1515/strm-2016-0013","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this paper is to study organized flocking behavior and systemic risk in heterogeneous mean-field interacting diffusions. We illustrate in a number of case studies the effect of heterogeneity in the behavior of systemic risk in the system, i.e., the risk that several agents default simultaneously as a result of interconnections. We also investigate the effect of heterogeneity on the “flocking behavior” of different agents, i.e., when agents with different dynamics end up following very similar paths and follow closely the mean behavior of the system. Using Laplace asymptotics, we derive an asymptotic formula for the tail of the loss distribution as the number of agents grows to infinity. This characterizes the tail of the loss distribution and the effect of the heterogeneity of the network on the tail loss probability.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2016-0013","citationCount":"4","resultStr":"{\"title\":\"On the effect of heterogeneity on flocking behavior and systemic risk\",\"authors\":\"Fei Fang, Yiwei Sun, K. Spiliopoulos\",\"doi\":\"10.1515/strm-2016-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The goal of this paper is to study organized flocking behavior and systemic risk in heterogeneous mean-field interacting diffusions. We illustrate in a number of case studies the effect of heterogeneity in the behavior of systemic risk in the system, i.e., the risk that several agents default simultaneously as a result of interconnections. We also investigate the effect of heterogeneity on the “flocking behavior” of different agents, i.e., when agents with different dynamics end up following very similar paths and follow closely the mean behavior of the system. Using Laplace asymptotics, we derive an asymptotic formula for the tail of the loss distribution as the number of agents grows to infinity. This characterizes the tail of the loss distribution and the effect of the heterogeneity of the network on the tail loss probability.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2016-0013\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2016-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2016-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the effect of heterogeneity on flocking behavior and systemic risk
Abstract The goal of this paper is to study organized flocking behavior and systemic risk in heterogeneous mean-field interacting diffusions. We illustrate in a number of case studies the effect of heterogeneity in the behavior of systemic risk in the system, i.e., the risk that several agents default simultaneously as a result of interconnections. We also investigate the effect of heterogeneity on the “flocking behavior” of different agents, i.e., when agents with different dynamics end up following very similar paths and follow closely the mean behavior of the system. Using Laplace asymptotics, we derive an asymptotic formula for the tail of the loss distribution as the number of agents grows to infinity. This characterizes the tail of the loss distribution and the effect of the heterogeneity of the network on the tail loss probability.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.