基于极端事件的金融时间序列双聚类算法

IF 1.3 Q2 STATISTICS & PROBABILITY
G. De Luca, P. Zuccolotto
{"title":"基于极端事件的金融时间序列双聚类算法","authors":"G. De Luca, P. Zuccolotto","doi":"10.1515/strm-2015-0026","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with a procedure for financial time series clustering, aimed at creating groups of time series characterized by similar behavior with regard to extreme events. The core of our proposal is a double clustering procedure: the former is based on the lower tail dependence of all the possible pairs of time series, the latter on the upper tail dependence. Tail dependence coefficients are estimated with copula functions. The final goal is to exploit the two clustering solutions in an algorithm designed to create a portfolio that maximizes the probability of joint positive extreme returns while minimizing the risk of joint negative extreme returns. In financial crisis scenarios, such a portfolio is expected to outperform portfolios generated by the traditional methods. We describe the results of a simulation study and, finally, we apply the procedure to a dataset composed of the 50 assets included in the EUROSTOXX index.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0026","citationCount":"13","resultStr":"{\"title\":\"A double clustering algorithm for financial time series based on extreme events\",\"authors\":\"G. De Luca, P. Zuccolotto\",\"doi\":\"10.1515/strm-2015-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with a procedure for financial time series clustering, aimed at creating groups of time series characterized by similar behavior with regard to extreme events. The core of our proposal is a double clustering procedure: the former is based on the lower tail dependence of all the possible pairs of time series, the latter on the upper tail dependence. Tail dependence coefficients are estimated with copula functions. The final goal is to exploit the two clustering solutions in an algorithm designed to create a portfolio that maximizes the probability of joint positive extreme returns while minimizing the risk of joint negative extreme returns. In financial crisis scenarios, such a portfolio is expected to outperform portfolios generated by the traditional methods. We describe the results of a simulation study and, finally, we apply the procedure to a dataset composed of the 50 assets included in the EUROSTOXX index.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0026\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

摘要

摘要:本文研究了金融时间序列聚类的一个过程,旨在创建具有极端事件相似行为特征的时间序列组。我们的建议的核心是一个双聚类过程:前者是基于所有可能的时间序列对的下尾依赖性,后者是基于上尾依赖性。用copula函数估计尾相关系数。最后的目标是在一个算法中利用这两种聚类解决方案来创建一个投资组合,该投资组合可以最大化联合极端正收益的概率,同时最小化联合极端负收益的风险。在金融危机的情况下,这样的投资组合预计会比传统方法产生的投资组合表现更好。我们描述了模拟研究的结果,最后,我们将该程序应用于由欧洲斯托克指数中包含的50种资产组成的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double clustering algorithm for financial time series based on extreme events
Abstract This paper is concerned with a procedure for financial time series clustering, aimed at creating groups of time series characterized by similar behavior with regard to extreme events. The core of our proposal is a double clustering procedure: the former is based on the lower tail dependence of all the possible pairs of time series, the latter on the upper tail dependence. Tail dependence coefficients are estimated with copula functions. The final goal is to exploit the two clustering solutions in an algorithm designed to create a portfolio that maximizes the probability of joint positive extreme returns while minimizing the risk of joint negative extreme returns. In financial crisis scenarios, such a portfolio is expected to outperform portfolios generated by the traditional methods. We describe the results of a simulation study and, finally, we apply the procedure to a dataset composed of the 50 assets included in the EUROSTOXX index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信