贷款定价低估风险

IF 1.3 Q2 STATISTICS & PROBABILITY
Richard Neuberg, Lauren Hannah
{"title":"贷款定价低估风险","authors":"Richard Neuberg, Lauren Hannah","doi":"10.1515/strm-2016-0005","DOIUrl":null,"url":null,"abstract":"Abstract Financial product prices often depend on unknown parameters. Their estimation introduces the risk that a better informed counterparty may strategically pick mispriced products. Understanding estimation risk, and how to properly price it, is essential. We discuss how total estimation risk can be minimized by selecting a probability model of appropriate complexity. We show that conditional estimation risk can be measured only if the probability model predictions have little bias. We illustrate how a premium for conditional estimation risk may be determined when one counterparty is better informed than the other, but a market collapse is to be avoided, using a simple example from pricing regime credit scoring. We empirically examine the approach on a panel data set from a German credit bureau, where we also study dynamic dependencies such as prior rating migrations and defaults.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2016-0005","citationCount":"1","resultStr":"{\"title\":\"Loan pricing under estimation risk\",\"authors\":\"Richard Neuberg, Lauren Hannah\",\"doi\":\"10.1515/strm-2016-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Financial product prices often depend on unknown parameters. Their estimation introduces the risk that a better informed counterparty may strategically pick mispriced products. Understanding estimation risk, and how to properly price it, is essential. We discuss how total estimation risk can be minimized by selecting a probability model of appropriate complexity. We show that conditional estimation risk can be measured only if the probability model predictions have little bias. We illustrate how a premium for conditional estimation risk may be determined when one counterparty is better informed than the other, but a market collapse is to be avoided, using a simple example from pricing regime credit scoring. We empirically examine the approach on a panel data set from a German credit bureau, where we also study dynamic dependencies such as prior rating migrations and defaults.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2016-0005\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2016-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2016-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

金融产品的价格往往取决于未知参数。他们的估计引入了一种风险,即消息更灵通的交易对手可能会战略性地选择定价错误的产品。理解评估风险,以及如何正确地为其定价,是至关重要的。我们讨论了如何通过选择适当复杂性的概率模型来最小化总评估风险。我们证明了条件估计风险只有在概率模型预测偏差很小的情况下才能被测量。我们举例说明,当交易对手一方比另一方更了解情况时,如何确定条件估计风险的溢价,但要避免市场崩溃,使用定价机制信用评分的简单示例。我们对来自德国信用局的面板数据集进行了实证检验,在那里我们还研究了动态依赖关系,如先前评级迁移和违约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loan pricing under estimation risk
Abstract Financial product prices often depend on unknown parameters. Their estimation introduces the risk that a better informed counterparty may strategically pick mispriced products. Understanding estimation risk, and how to properly price it, is essential. We discuss how total estimation risk can be minimized by selecting a probability model of appropriate complexity. We show that conditional estimation risk can be measured only if the probability model predictions have little bias. We illustrate how a premium for conditional estimation risk may be determined when one counterparty is better informed than the other, but a market collapse is to be avoided, using a simple example from pricing regime credit scoring. We empirically examine the approach on a panel data set from a German credit bureau, where we also study dynamic dependencies such as prior rating migrations and defaults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信