集体风险风险测度的非参数估计

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Lauer, Henryk Zähle
{"title":"集体风险风险测度的非参数估计","authors":"A. Lauer, Henryk Zähle","doi":"10.1515/strm-2015-0014","DOIUrl":null,"url":null,"abstract":"Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0014","citationCount":"4","resultStr":"{\"title\":\"Nonparametric estimation of risk measures of collective risks\",\"authors\":\"A. Lauer, Henryk Zähle\",\"doi\":\"10.1515/strm-2015-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0014\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文考虑了两个非参数估计量,用于估算n个个人保险风险总和的风险度量,其中用于统计估计的历史单一索赔数为n阶。该框架与非寿险公司在保费计算范围内面临的情况相匹配。实际上,总风险的风险度量除以n可以看作是每个单独风险的适当溢价。对于两个估计量除以n,我们得到了一类Marcinkiewicz-Zygmund强定律和一个弱极限定理。通过蒙特卡罗模拟研究了小到中等n估计量的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric estimation of risk measures of collective risks
Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信