{"title":"集体风险风险测度的非参数估计","authors":"A. Lauer, Henryk Zähle","doi":"10.1515/strm-2015-0014","DOIUrl":null,"url":null,"abstract":"Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0014","citationCount":"4","resultStr":"{\"title\":\"Nonparametric estimation of risk measures of collective risks\",\"authors\":\"A. Lauer, Henryk Zähle\",\"doi\":\"10.1515/strm-2015-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0014\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric estimation of risk measures of collective risks
Abstract We consider two nonparametric estimators for the risk measure of the sum of n i.i.d. individual insurance risks where the number of historical single claims that are used for the statistical estimation is of order n. This framework matches the situation that nonlife insurance companies are faced with within the scope of premium calculation. Indeed, the risk measure of the aggregate risk divided by n can be seen as a suitable premium for each of the individual risks. For both estimators divided by n we derive a sort of Marcinkiewicz–Zygmund strong law as well as a weak limit theorem. The behavior of the estimators for small to moderate n is studied by means of Monte-Carlo simulations.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.