{"title":"隐马尔可夫切换模型中的红利最大化","authors":"Michaela Szolgyenyi","doi":"10.1515/strm-2015-0019","DOIUrl":null,"url":null,"abstract":"In this paper we study the valuation problem of an insurance company by maximizing the expected discounted future dividend payments in a model with partial information that allows for a changing economic environment. The surplus process is modeled as a Brownian motion with drift. This drift depends on an underlying Markov chain the current state of which is assumed to be unobservable. The different states of the Markov chain thereby represent different phases of the economy. We apply results from filtering theory to overcome uncertainty and then we give an analytic characterization of the optimal value function. Finally, we present a numerical study covering various scenarios to get a clear picture of how dividends should be paid out.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0019","citationCount":"7","resultStr":"{\"title\":\"Dividend maximization in a hidden Markov switching model\",\"authors\":\"Michaela Szolgyenyi\",\"doi\":\"10.1515/strm-2015-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the valuation problem of an insurance company by maximizing the expected discounted future dividend payments in a model with partial information that allows for a changing economic environment. The surplus process is modeled as a Brownian motion with drift. This drift depends on an underlying Markov chain the current state of which is assumed to be unobservable. The different states of the Markov chain thereby represent different phases of the economy. We apply results from filtering theory to overcome uncertainty and then we give an analytic characterization of the optimal value function. Finally, we present a numerical study covering various scenarios to get a clear picture of how dividends should be paid out.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0019\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Dividend maximization in a hidden Markov switching model
In this paper we study the valuation problem of an insurance company by maximizing the expected discounted future dividend payments in a model with partial information that allows for a changing economic environment. The surplus process is modeled as a Brownian motion with drift. This drift depends on an underlying Markov chain the current state of which is assumed to be unobservable. The different states of the Markov chain thereby represent different phases of the economy. We apply results from filtering theory to overcome uncertainty and then we give an analytic characterization of the optimal value function. Finally, we present a numerical study covering various scenarios to get a clear picture of how dividends should be paid out.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.