利用网络:基于DebtRank的压力测试框架

IF 1.3 Q2 STATISTICS & PROBABILITY
S. Battiston, G. Caldarelli, M. d’Errico, S. Gurciullo
{"title":"利用网络:基于DebtRank的压力测试框架","authors":"S. Battiston, G. Caldarelli, M. d’Errico, S. Gurciullo","doi":"10.1515/strm-2015-0005","DOIUrl":null,"url":null,"abstract":"Abstract We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008–2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0005","citationCount":"96","resultStr":"{\"title\":\"Leveraging the network: A stress-test framework based on DebtRank\",\"authors\":\"S. Battiston, G. Caldarelli, M. d’Errico, S. Gurciullo\",\"doi\":\"10.1515/strm-2015-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008–2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0005\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 96

摘要

我们开发了一个新的压力测试框架来监测金融系统的系统性风险。该框架的模块化结构允许适应各种冲击情景、估算银行间风险敞口的方法和危机传播机制。其主要特性如下。首先,该框架不仅允许估计和理清第一轮效应(即对外部资产的冲击)和第二轮效应(即在银行间网络中引发的困境),还允许估计和理清可能的贱卖引发的第三轮效应。其次,它允许同时监测冲击对单个或金融机构群体的影响,以及它们对交易对手或某些资产类别的冲击的脆弱性。第三,它包括对损失分布的估计,从而将网络效应与熟悉的风险度量(如VaR和CVaR)结合起来。第四,为了进行稳健性分析并处理不完整的数据,该框架具有一个模块,用于生成与每家银行的总借贷一致的银行间风险敞口网络集。为了说明这一点,我们在2008年至2013年期间对欧洲上市银行的数据集进行了压力测试。我们发现,第二轮和第三轮效应主导了第一轮效应,因此,目前大多数压力测试框架可能导致对系统性风险的严重低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging the network: A stress-test framework based on DebtRank
Abstract We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008–2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信