Cox-Ingersoll-Ross模型中的变化检测

IF 1.3 Q2 STATISTICS & PROBABILITY
G. Pap, Tamás T. Szabó
{"title":"Cox-Ingersoll-Ross模型中的变化检测","authors":"G. Pap, Tamás T. Szabó","doi":"10.1515/strm-2015-0008","DOIUrl":null,"url":null,"abstract":"Abstract We propose an offline change detection method for the famous Cox–Ingersoll–Ross model based on a continuous sample. We develop one- and two-sided testing procedures for both drift parameters of the process. The test process is based on estimators that are motivated by the discrete time least-squares estimators, and its asymptotic distribution under the no-change hypothesis is that of a Brownian bridge. We prove the asymptotic weak consistence of the test, and derive the asymptotic properties of the change-point estimator under the alternative hypothesis of change at one point in time.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2015-0008","citationCount":"2","resultStr":"{\"title\":\"Change detection in the Cox–Ingersoll–Ross model\",\"authors\":\"G. Pap, Tamás T. Szabó\",\"doi\":\"10.1515/strm-2015-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose an offline change detection method for the famous Cox–Ingersoll–Ross model based on a continuous sample. We develop one- and two-sided testing procedures for both drift parameters of the process. The test process is based on estimators that are motivated by the discrete time least-squares estimators, and its asymptotic distribution under the no-change hypothesis is that of a Brownian bridge. We prove the asymptotic weak consistence of the test, and derive the asymptotic properties of the change-point estimator under the alternative hypothesis of change at one point in time.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2015-0008\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2015-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2015-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要针对著名的Cox-Ingersoll-Ross模型,提出了一种基于连续样本的离线变化检测方法。我们开发了该工艺的两个漂移参数的单侧和双侧测试程序。该检验过程基于离散时间最小二乘估计量,其在不变假设下的渐近分布为布朗桥的渐近分布。我们证明了该检验的渐近弱相合性,并在一个时点变化的备择假设下,导出了变点估计量的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Change detection in the Cox–Ingersoll–Ross model
Abstract We propose an offline change detection method for the famous Cox–Ingersoll–Ross model based on a continuous sample. We develop one- and two-sided testing procedures for both drift parameters of the process. The test process is based on estimators that are motivated by the discrete time least-squares estimators, and its asymptotic distribution under the no-change hypothesis is that of a Brownian bridge. We prove the asymptotic weak consistence of the test, and derive the asymptotic properties of the change-point estimator under the alternative hypothesis of change at one point in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信