{"title":"短缺风险控制:分位数套期保值方法的改进","authors":"M. Barski","doi":"10.1515/strm-2014-1169","DOIUrl":null,"url":null,"abstract":"Abstract The issue of constructing a risk minimizing hedge under an additional almost-surely type constraint on the shortfall profile is examined. Several classical risk minimizing problems are adapted to the new setting and solved. In particular, the bankruptcy threat of optimal strategies appearing in the classical risk minimizing setting is ruled out. The existence and concrete forms of optimal strategies in a general semimartingale market model with the use of conditional statistical tests are proven. The quantile hedging method applied in [Finance Stoch. 3 (1999), 251–273; Finance Stoch. 4 (2000), 117–146] as well as the classical Neyman–Pearson lemma are generalized. Optimal hedging strategies with shortfall constraints in the Black–Scholes and exponential Poisson model are explicitly determined.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2014-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2014-1169","citationCount":"3","resultStr":"{\"title\":\"On the shortfall risk control: A refinement of the quantile hedging method\",\"authors\":\"M. Barski\",\"doi\":\"10.1515/strm-2014-1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The issue of constructing a risk minimizing hedge under an additional almost-surely type constraint on the shortfall profile is examined. Several classical risk minimizing problems are adapted to the new setting and solved. In particular, the bankruptcy threat of optimal strategies appearing in the classical risk minimizing setting is ruled out. The existence and concrete forms of optimal strategies in a general semimartingale market model with the use of conditional statistical tests are proven. The quantile hedging method applied in [Finance Stoch. 3 (1999), 251–273; Finance Stoch. 4 (2000), 117–146] as well as the classical Neyman–Pearson lemma are generalized. Optimal hedging strategies with shortfall constraints in the Black–Scholes and exponential Poisson model are explicitly determined.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2014-1169\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2014-1169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2014-1169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the shortfall risk control: A refinement of the quantile hedging method
Abstract The issue of constructing a risk minimizing hedge under an additional almost-surely type constraint on the shortfall profile is examined. Several classical risk minimizing problems are adapted to the new setting and solved. In particular, the bankruptcy threat of optimal strategies appearing in the classical risk minimizing setting is ruled out. The existence and concrete forms of optimal strategies in a general semimartingale market model with the use of conditional statistical tests are proven. The quantile hedging method applied in [Finance Stoch. 3 (1999), 251–273; Finance Stoch. 4 (2000), 117–146] as well as the classical Neyman–Pearson lemma are generalized. Optimal hedging strategies with shortfall constraints in the Black–Scholes and exponential Poisson model are explicitly determined.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.