{"title":"一般风险域凸风险泛函的最优风险分配","authors":"S. Kiesel, L. Rüschendorf","doi":"10.1515/strm-2012-1156","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we formulate the classical optimal risk allocation problem for convex risk functionals defined on products of real Banach spaces as risk domains. This generality includes in particular the classical case of Lp risks but also allows to describe the influence of dependence in the risk allocation problem. We characterize optimal allocations and complete known existence and uniqueness results from the literature. We discuss in detail an application to expected risk functionals. This case can be dealt with by the Banach space approach applied to Orlicz hearts associated to the risk functionals. We give a detailed discussion of the necessary continuity and differentiability properties. Based on ordering results for Orlicz hearts we obtain extensions of the optimal allocation results to different Orlicz hearts as domain of risk functionals and establish a general form of the classical Borch theorem. In some numerical examples, optimal redistributions are determined for the expected risk case and the precision of the numerical calculation is checked.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2012-1156","citationCount":"1","resultStr":"{\"title\":\"Optimal risk allocation for convex risk functionals in general risk domains\",\"authors\":\"S. Kiesel, L. Rüschendorf\",\"doi\":\"10.1515/strm-2012-1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we formulate the classical optimal risk allocation problem for convex risk functionals defined on products of real Banach spaces as risk domains. This generality includes in particular the classical case of Lp risks but also allows to describe the influence of dependence in the risk allocation problem. We characterize optimal allocations and complete known existence and uniqueness results from the literature. We discuss in detail an application to expected risk functionals. This case can be dealt with by the Banach space approach applied to Orlicz hearts associated to the risk functionals. We give a detailed discussion of the necessary continuity and differentiability properties. Based on ordering results for Orlicz hearts we obtain extensions of the optimal allocation results to different Orlicz hearts as domain of risk functionals and establish a general form of the classical Borch theorem. In some numerical examples, optimal redistributions are determined for the expected risk case and the precision of the numerical calculation is checked.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2012-1156\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2012-1156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2012-1156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Optimal risk allocation for convex risk functionals in general risk domains
Abstract In this paper, we formulate the classical optimal risk allocation problem for convex risk functionals defined on products of real Banach spaces as risk domains. This generality includes in particular the classical case of Lp risks but also allows to describe the influence of dependence in the risk allocation problem. We characterize optimal allocations and complete known existence and uniqueness results from the literature. We discuss in detail an application to expected risk functionals. This case can be dealt with by the Banach space approach applied to Orlicz hearts associated to the risk functionals. We give a detailed discussion of the necessary continuity and differentiability properties. Based on ordering results for Orlicz hearts we obtain extensions of the optimal allocation results to different Orlicz hearts as domain of risk functionals and establish a general form of the classical Borch theorem. In some numerical examples, optimal redistributions are determined for the expected risk case and the precision of the numerical calculation is checked.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.