奥氏体化温度对微合金钢马氏体相变的影响及其对模拟焊接残余应力的影响

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Salvatore Giuliano Peixoto Tropia de Abreu, R. Porcaro, G. Faria, L. Godefroid, I. C. Pereira, S. D. D. Souza
{"title":"奥氏体化温度对微合金钢马氏体相变的影响及其对模拟焊接残余应力的影响","authors":"Salvatore Giuliano Peixoto Tropia de Abreu, R. Porcaro, G. Faria, L. Godefroid, I. C. Pereira, S. D. D. Souza","doi":"10.1590/1980-5373-mr-2022-0624","DOIUrl":null,"url":null,"abstract":"This study focused on the effects of different peak (austenitizing) temperatures (T p ) over the martensite start temperature (M s ) and its influence on the final residual stresses after welding simulation. For this purpose, the expansion coefficients obtained through physical (dilatometric) simulations of a high-strength low-alloy steel were considered for three peak temperatures: 1300 °C, 1150 °C, and 920 °C and a cooling rate of 25 °C/s. Aiming at clarifying the physical phenomenon behind GTAW welding, one carried out nonlinear transient thermomechanical finite-element (FE) analyses to reconstitute the welding process and simulate the subsequent formation of residual stresses in the HAZ. Once the heat source simulation was calibrated, four material models were created, one for each T p , and a fourth model considering a constant expansion coefficient, without considering the martensite transformation for comparison. A Three-bar model was evaluated to isolate the effects of T p (M s ) in the residual stresses. A composite plate model was also considered, in which the sheet HAZ was subdivided according to the reached peak temperature, and the respective material models were applied. The results show the importance of martensite transformation on the welding-induced residual stress and a clear trend of decreasing tensions with lowering the T p , especially over HAZ.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Austenitizing Temperature Effects on the Martensitic Transformation and its Influence on Simulated Welding Residual Stresses in a Microalloyed-Steel\",\"authors\":\"Salvatore Giuliano Peixoto Tropia de Abreu, R. Porcaro, G. Faria, L. Godefroid, I. C. Pereira, S. D. D. Souza\",\"doi\":\"10.1590/1980-5373-mr-2022-0624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focused on the effects of different peak (austenitizing) temperatures (T p ) over the martensite start temperature (M s ) and its influence on the final residual stresses after welding simulation. For this purpose, the expansion coefficients obtained through physical (dilatometric) simulations of a high-strength low-alloy steel were considered for three peak temperatures: 1300 °C, 1150 °C, and 920 °C and a cooling rate of 25 °C/s. Aiming at clarifying the physical phenomenon behind GTAW welding, one carried out nonlinear transient thermomechanical finite-element (FE) analyses to reconstitute the welding process and simulate the subsequent formation of residual stresses in the HAZ. Once the heat source simulation was calibrated, four material models were created, one for each T p , and a fourth model considering a constant expansion coefficient, without considering the martensite transformation for comparison. A Three-bar model was evaluated to isolate the effects of T p (M s ) in the residual stresses. A composite plate model was also considered, in which the sheet HAZ was subdivided according to the reached peak temperature, and the respective material models were applied. The results show the importance of martensite transformation on the welding-induced residual stress and a clear trend of decreasing tensions with lowering the T p , especially over HAZ.\",\"PeriodicalId\":18331,\"journal\":{\"name\":\"Materials Research-ibero-american Journal of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research-ibero-american Journal of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/1980-5373-mr-2022-0624\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0624","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Austenitizing Temperature Effects on the Martensitic Transformation and its Influence on Simulated Welding Residual Stresses in a Microalloyed-Steel
This study focused on the effects of different peak (austenitizing) temperatures (T p ) over the martensite start temperature (M s ) and its influence on the final residual stresses after welding simulation. For this purpose, the expansion coefficients obtained through physical (dilatometric) simulations of a high-strength low-alloy steel were considered for three peak temperatures: 1300 °C, 1150 °C, and 920 °C and a cooling rate of 25 °C/s. Aiming at clarifying the physical phenomenon behind GTAW welding, one carried out nonlinear transient thermomechanical finite-element (FE) analyses to reconstitute the welding process and simulate the subsequent formation of residual stresses in the HAZ. Once the heat source simulation was calibrated, four material models were created, one for each T p , and a fourth model considering a constant expansion coefficient, without considering the martensite transformation for comparison. A Three-bar model was evaluated to isolate the effects of T p (M s ) in the residual stresses. A composite plate model was also considered, in which the sheet HAZ was subdivided according to the reached peak temperature, and the respective material models were applied. The results show the importance of martensite transformation on the welding-induced residual stress and a clear trend of decreasing tensions with lowering the T p , especially over HAZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信