Pd对β-NiAl扩散涂层结构和氧化性能的影响

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
E. Pauletti, A.S.C.M d’ Oliveira
{"title":"Pd对β-NiAl扩散涂层结构和氧化性能的影响","authors":"E. Pauletti, A.S.C.M d’ Oliveira","doi":"10.1590/1980-5373-mr-2022-0384","DOIUrl":null,"url":null,"abstract":"Aluminized coatings on Ni based alloys greatly contribute to achieve process efficiency at higher operating temperatures. The present study characterized Pd-modified and unmodified aluminized coatings and compared with those of Pt-modified coatings regarding the mechanisms of formation and oxidation performance. The results show that Pd reduces the driving force for diffusion of Al during coating formation, increases outward diffusion of Ni and reduces diffusion of alloying elements (Cr and Ti) into the intermetallic layer. In contrast, Pt increases the driving force for diffusion of Al and the mobility of Al in the intermetallic layer of the aluminized coating. These characteristics have a direct impact on oxidation at 1000 °C that showed that Pd reduced the rate of θ-Al 2 O 3 → α-Al 2 O 3 transformation, accounting for higher density of voids at the interface β(NiAl)/θ-Al 2 O 3, diffusion of oxygen into the coating, spalling and faster degradation of coatings.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Pd on the Structure and Oxidation Performance of β-NiAl Diffusion Coatings\",\"authors\":\"E. Pauletti, A.S.C.M d’ Oliveira\",\"doi\":\"10.1590/1980-5373-mr-2022-0384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminized coatings on Ni based alloys greatly contribute to achieve process efficiency at higher operating temperatures. The present study characterized Pd-modified and unmodified aluminized coatings and compared with those of Pt-modified coatings regarding the mechanisms of formation and oxidation performance. The results show that Pd reduces the driving force for diffusion of Al during coating formation, increases outward diffusion of Ni and reduces diffusion of alloying elements (Cr and Ti) into the intermetallic layer. In contrast, Pt increases the driving force for diffusion of Al and the mobility of Al in the intermetallic layer of the aluminized coating. These characteristics have a direct impact on oxidation at 1000 °C that showed that Pd reduced the rate of θ-Al 2 O 3 → α-Al 2 O 3 transformation, accounting for higher density of voids at the interface β(NiAl)/θ-Al 2 O 3, diffusion of oxygen into the coating, spalling and faster degradation of coatings.\",\"PeriodicalId\":18331,\"journal\":{\"name\":\"Materials Research-ibero-american Journal of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research-ibero-american Journal of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/1980-5373-mr-2022-0384\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0384","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Pd on the Structure and Oxidation Performance of β-NiAl Diffusion Coatings
Aluminized coatings on Ni based alloys greatly contribute to achieve process efficiency at higher operating temperatures. The present study characterized Pd-modified and unmodified aluminized coatings and compared with those of Pt-modified coatings regarding the mechanisms of formation and oxidation performance. The results show that Pd reduces the driving force for diffusion of Al during coating formation, increases outward diffusion of Ni and reduces diffusion of alloying elements (Cr and Ti) into the intermetallic layer. In contrast, Pt increases the driving force for diffusion of Al and the mobility of Al in the intermetallic layer of the aluminized coating. These characteristics have a direct impact on oxidation at 1000 °C that showed that Pd reduced the rate of θ-Al 2 O 3 → α-Al 2 O 3 transformation, accounting for higher density of voids at the interface β(NiAl)/θ-Al 2 O 3, diffusion of oxygen into the coating, spalling and faster degradation of coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信