中等直流磁场和电流作用下铝A360定向凝固研究

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Kaldre, A. Bojarevičs, M. Milgrāvis, T. Beinerts, M. Kalvāns
{"title":"中等直流磁场和电流作用下铝A360定向凝固研究","authors":"I. Kaldre, A. Bojarevičs, M. Milgrāvis, T. Beinerts, M. Kalvāns","doi":"10.1590/1980-5373-mr-2022-0330","DOIUrl":null,"url":null,"abstract":"Metal additive manufacturing is rapidly developing technology, but its application in wider scale is limited by several factors. One of these is expensive raw material, because it requires certain physical properties. Two most popular metal additive manufacturing methods are printing from powder and printing from wire. Wire is usually produced by drawing it from rod. Rod can be produced by directional solidification, which is well known method to study the microstructure formation depending on various parameters during solidification. In this study directional solidification of A360 aluminum alloy with electromagnetic interaction is investigated. Aluminum alloy is induction melted and then directionally solidified into the rod 12-20 mm in diameter. Aim of this work is to investigate the role of axial DC magnetic field and electric current interaction on the grain refinement and mechanical properties of A360 aluminum alloy. It is found that electromagnetic interaction can be the approach to refine the grains, regulate the growth of oriented columnar grains and to improve mechanical properties of the material.","PeriodicalId":18331,"journal":{"name":"Materials Research-ibero-american Journal of Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional Solidification of Aluminum A360 under Moderate DC Magnetic Field and Electric Current\",\"authors\":\"I. Kaldre, A. Bojarevičs, M. Milgrāvis, T. Beinerts, M. Kalvāns\",\"doi\":\"10.1590/1980-5373-mr-2022-0330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal additive manufacturing is rapidly developing technology, but its application in wider scale is limited by several factors. One of these is expensive raw material, because it requires certain physical properties. Two most popular metal additive manufacturing methods are printing from powder and printing from wire. Wire is usually produced by drawing it from rod. Rod can be produced by directional solidification, which is well known method to study the microstructure formation depending on various parameters during solidification. In this study directional solidification of A360 aluminum alloy with electromagnetic interaction is investigated. Aluminum alloy is induction melted and then directionally solidified into the rod 12-20 mm in diameter. Aim of this work is to investigate the role of axial DC magnetic field and electric current interaction on the grain refinement and mechanical properties of A360 aluminum alloy. It is found that electromagnetic interaction can be the approach to refine the grains, regulate the growth of oriented columnar grains and to improve mechanical properties of the material.\",\"PeriodicalId\":18331,\"journal\":{\"name\":\"Materials Research-ibero-american Journal of Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research-ibero-american Journal of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/1980-5373-mr-2022-0330\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research-ibero-american Journal of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/1980-5373-mr-2022-0330","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directional Solidification of Aluminum A360 under Moderate DC Magnetic Field and Electric Current
Metal additive manufacturing is rapidly developing technology, but its application in wider scale is limited by several factors. One of these is expensive raw material, because it requires certain physical properties. Two most popular metal additive manufacturing methods are printing from powder and printing from wire. Wire is usually produced by drawing it from rod. Rod can be produced by directional solidification, which is well known method to study the microstructure formation depending on various parameters during solidification. In this study directional solidification of A360 aluminum alloy with electromagnetic interaction is investigated. Aluminum alloy is induction melted and then directionally solidified into the rod 12-20 mm in diameter. Aim of this work is to investigate the role of axial DC magnetic field and electric current interaction on the grain refinement and mechanical properties of A360 aluminum alloy. It is found that electromagnetic interaction can be the approach to refine the grains, regulate the growth of oriented columnar grains and to improve mechanical properties of the material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research-ibero-american Journal of Materials
Materials Research-ibero-american Journal of Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
11.80%
发文量
161
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信