数论在数学教师教育中的应用:(在)对算术素数和基本定理的理解

G. P. Oliveira, Rubens Fonseca
{"title":"数论在数学教师教育中的应用:(在)对算术素数和基本定理的理解","authors":"G. P. Oliveira, Rubens Fonseca","doi":"10.1590/1516-731320170040015","DOIUrl":null,"url":null,"abstract":"portuguesEste artigo aborda as formas pelas quais um grupo de licenciandos em Matematica compreendem alguns conceitos da Teoria dos Numeros, entre os quais o de numeros primos e o teorema fundamental da aritmetica. Por meio de uma abordagem qualitativa, foram recolhidas respostas de dez sujeitos a duas questoes, que foram analisadas a luz do conceito de transparencia/opacidade das representacoes numericas, para verificar se haveria coerencia entre os conceitos enunciados nas respostas em relacao ao problema que deveria ser resolvido. Assim, o texto evidencia estrategias usadas pelos participantes da investigacao, relacionadas as questoes que envolvem a primalidade dos numeros naturais, bem como a importância do conhecimento formal da teoria dos numeros por parte dos professores de Matematica em formacao. Alem disso, surgiram elementos que indicam que o apelo a intuicao, nem sempre correto, e as solucoes prescritivas ocorreram consideravelmente, tanto no contexto pesquisado como nos trabalhos empregados como referencias teoricas. EnglishThis article discusses the ways in which a group of undergraduates in Mathematics understand concepts related to number theory, including \"prime numbers\" and \"fundamental theorem of arithmetic\". Through a qualitative approach, the answers for two questions were collected from ten subjects, which were analyzed in the light of the concept of transparency/opacity of numerical representations, in order to verify whether there was consistency between the concepts set out in one answer in comparison to the problem that should be solved in the other. The text highlights strategies used by research participants related to issues involving the primality of natural numbers, and the importance of formal knowledge of number theory by the mathematics teachers in training. In addition, there were elements that allowed us to conclude that the appeal to intuition, though not always correct, and too prescriptive often occurred, both in the context researched and in the works used as theoretical references.","PeriodicalId":30004,"journal":{"name":"Ciencia Educacao","volume":"23 1","pages":"881-898"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1590/1516-731320170040015","citationCount":"2","resultStr":"{\"title\":\"A teoria dos números na formação de professores de matemática: (in)compreensões acerca da primalidade e do teorema fundamental da Aritmética\",\"authors\":\"G. P. Oliveira, Rubens Fonseca\",\"doi\":\"10.1590/1516-731320170040015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"portuguesEste artigo aborda as formas pelas quais um grupo de licenciandos em Matematica compreendem alguns conceitos da Teoria dos Numeros, entre os quais o de numeros primos e o teorema fundamental da aritmetica. Por meio de uma abordagem qualitativa, foram recolhidas respostas de dez sujeitos a duas questoes, que foram analisadas a luz do conceito de transparencia/opacidade das representacoes numericas, para verificar se haveria coerencia entre os conceitos enunciados nas respostas em relacao ao problema que deveria ser resolvido. Assim, o texto evidencia estrategias usadas pelos participantes da investigacao, relacionadas as questoes que envolvem a primalidade dos numeros naturais, bem como a importância do conhecimento formal da teoria dos numeros por parte dos professores de Matematica em formacao. Alem disso, surgiram elementos que indicam que o apelo a intuicao, nem sempre correto, e as solucoes prescritivas ocorreram consideravelmente, tanto no contexto pesquisado como nos trabalhos empregados como referencias teoricas. EnglishThis article discusses the ways in which a group of undergraduates in Mathematics understand concepts related to number theory, including \\\"prime numbers\\\" and \\\"fundamental theorem of arithmetic\\\". Through a qualitative approach, the answers for two questions were collected from ten subjects, which were analyzed in the light of the concept of transparency/opacity of numerical representations, in order to verify whether there was consistency between the concepts set out in one answer in comparison to the problem that should be solved in the other. The text highlights strategies used by research participants related to issues involving the primality of natural numbers, and the importance of formal knowledge of number theory by the mathematics teachers in training. In addition, there were elements that allowed us to conclude that the appeal to intuition, though not always correct, and too prescriptive often occurred, both in the context researched and in the works used as theoretical references.\",\"PeriodicalId\":30004,\"journal\":{\"name\":\"Ciencia Educacao\",\"volume\":\"23 1\",\"pages\":\"881-898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1590/1516-731320170040015\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia Educacao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1516-731320170040015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia Educacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1516-731320170040015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这篇文章讨论了一群数学本科生如何理解数论的一些概念,包括素数和算术的基本定理。通过定性方法,我们收集了10名受试者对两个问题的回答,并根据数字表示的透明度/不透明度的概念进行分析,以验证答案中所陈述的概念与应该解决的问题之间是否存在一致性。因此,本文强调了研究参与者所使用的策略,涉及自然数的质数问题,以及数学教师在培训中对数论正式知识的重要性。此外,出现的因素表明,无论是在研究的背景下,还是在作为理论参考的工作中,直觉的吸引力,并不总是正确的,和规范性的解决方案发生了相当大的变化。这篇文章讨论了一组数学本科生如何理解与数论相关的概念,包括“数论”和“算术基本定理”。通过定性的方法,对两个问题的答案是收集从十人,维analyzed淡的透明度的概念/ opacity of中的数值representations,以便做whether之间有一致性的概念,把在一个答案在完成其他的问题应该得到解决。该文本强调了研究参与者在涉及自然数的首要性问题上所使用的策略,以及数学教师在培训中对数论形式知识的重要性。在扩增区,有元素,允许我们conclude诉诸直觉,虽然不总是正确的,太prescriptive经常发生,无论是在工厂使用的上下文researched and的理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A teoria dos números na formação de professores de matemática: (in)compreensões acerca da primalidade e do teorema fundamental da Aritmética
portuguesEste artigo aborda as formas pelas quais um grupo de licenciandos em Matematica compreendem alguns conceitos da Teoria dos Numeros, entre os quais o de numeros primos e o teorema fundamental da aritmetica. Por meio de uma abordagem qualitativa, foram recolhidas respostas de dez sujeitos a duas questoes, que foram analisadas a luz do conceito de transparencia/opacidade das representacoes numericas, para verificar se haveria coerencia entre os conceitos enunciados nas respostas em relacao ao problema que deveria ser resolvido. Assim, o texto evidencia estrategias usadas pelos participantes da investigacao, relacionadas as questoes que envolvem a primalidade dos numeros naturais, bem como a importância do conhecimento formal da teoria dos numeros por parte dos professores de Matematica em formacao. Alem disso, surgiram elementos que indicam que o apelo a intuicao, nem sempre correto, e as solucoes prescritivas ocorreram consideravelmente, tanto no contexto pesquisado como nos trabalhos empregados como referencias teoricas. EnglishThis article discusses the ways in which a group of undergraduates in Mathematics understand concepts related to number theory, including "prime numbers" and "fundamental theorem of arithmetic". Through a qualitative approach, the answers for two questions were collected from ten subjects, which were analyzed in the light of the concept of transparency/opacity of numerical representations, in order to verify whether there was consistency between the concepts set out in one answer in comparison to the problem that should be solved in the other. The text highlights strategies used by research participants related to issues involving the primality of natural numbers, and the importance of formal knowledge of number theory by the mathematics teachers in training. In addition, there were elements that allowed us to conclude that the appeal to intuition, though not always correct, and too prescriptive often occurred, both in the context researched and in the works used as theoretical references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信