A. Omar, H. Hasanien, A. Al‐Durra, Walid H. Abd El-Hameed
{"title":"太阳能光伏模型参数估计的水循环算法","authors":"A. Omar, H. Hasanien, A. Al‐Durra, Walid H. Abd El-Hameed","doi":"10.15866/IRECON.V7I3.16187","DOIUrl":null,"url":null,"abstract":"The results of photovoltaic systems simulations using power electronics devices are affected by PV models’ accuracy; examples of photovoltaic systems such simulations are: maximum power point tracking (MPPT) of the photovoltaic systems, transient and dynamic analysis of the photovoltaic systems, and micro grid systems working of micro grid systems. The photovoltaic mathematical models depict a nonlinear I-V characteristic covering unknown parameters due to the restricted information given by PV panel’s manufacturers of the photolytic panels. This paper investigates the use of Water Cycle Algorithm (WCA); it will be the using world rivers/streams cycles. This accurate observing is a new population-based meta-heuristic optimizer. Here, WCA is simulated in MATLAB environment and applied to both single-diode model (S.D.M) and double-diode model (D.D.M) as represented. Authenticity of these proposed photovoltaic systems a model is ascertained by the simulations of the outcomes, where these simulations are implemented under different environmental conditions. Outcomes are compared to experimental results by Kyocera KC200GT PV module. The effectiveness and efficiency of proposed mathematical models are established through comparing models absolute error with respect to experimental outcomes and that of other photovoltaic systems models. The WCA can therefore be used, based on its results in developing accurate PV models.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model\",\"authors\":\"A. Omar, H. Hasanien, A. Al‐Durra, Walid H. Abd El-Hameed\",\"doi\":\"10.15866/IRECON.V7I3.16187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of photovoltaic systems simulations using power electronics devices are affected by PV models’ accuracy; examples of photovoltaic systems such simulations are: maximum power point tracking (MPPT) of the photovoltaic systems, transient and dynamic analysis of the photovoltaic systems, and micro grid systems working of micro grid systems. The photovoltaic mathematical models depict a nonlinear I-V characteristic covering unknown parameters due to the restricted information given by PV panel’s manufacturers of the photolytic panels. This paper investigates the use of Water Cycle Algorithm (WCA); it will be the using world rivers/streams cycles. This accurate observing is a new population-based meta-heuristic optimizer. Here, WCA is simulated in MATLAB environment and applied to both single-diode model (S.D.M) and double-diode model (D.D.M) as represented. Authenticity of these proposed photovoltaic systems a model is ascertained by the simulations of the outcomes, where these simulations are implemented under different environmental conditions. Outcomes are compared to experimental results by Kyocera KC200GT PV module. The effectiveness and efficiency of proposed mathematical models are established through comparing models absolute error with respect to experimental outcomes and that of other photovoltaic systems models. The WCA can therefore be used, based on its results in developing accurate PV models.\",\"PeriodicalId\":37583,\"journal\":{\"name\":\"International Journal on Energy Conversion\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IRECON.V7I3.16187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V7I3.16187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model
The results of photovoltaic systems simulations using power electronics devices are affected by PV models’ accuracy; examples of photovoltaic systems such simulations are: maximum power point tracking (MPPT) of the photovoltaic systems, transient and dynamic analysis of the photovoltaic systems, and micro grid systems working of micro grid systems. The photovoltaic mathematical models depict a nonlinear I-V characteristic covering unknown parameters due to the restricted information given by PV panel’s manufacturers of the photolytic panels. This paper investigates the use of Water Cycle Algorithm (WCA); it will be the using world rivers/streams cycles. This accurate observing is a new population-based meta-heuristic optimizer. Here, WCA is simulated in MATLAB environment and applied to both single-diode model (S.D.M) and double-diode model (D.D.M) as represented. Authenticity of these proposed photovoltaic systems a model is ascertained by the simulations of the outcomes, where these simulations are implemented under different environmental conditions. Outcomes are compared to experimental results by Kyocera KC200GT PV module. The effectiveness and efficiency of proposed mathematical models are established through comparing models absolute error with respect to experimental outcomes and that of other photovoltaic systems models. The WCA can therefore be used, based on its results in developing accurate PV models.
期刊介绍:
The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.