与动物生产设施集成的智能自动化监控

R. C. Santos, André L. N. Lopes, A. C. Sanches, E. P. Gomes, Edlaine A. S. da Silva, Jhon L. B. da Silva
{"title":"与动物生产设施集成的智能自动化监控","authors":"R. C. Santos, André L. N. Lopes, A. C. Sanches, E. P. Gomes, Edlaine A. S. da Silva, Jhon L. B. da Silva","doi":"10.1590/1809-4430-eng.agric.v43n2e20220225/2023","DOIUrl":null,"url":null,"abstract":"Increasing population and demand for animal-derived products has raised the need for improved efficiency in managing and controlling animal production. Given this context, the project aimed to develop a device that aids decision-making in animal production. A hardware system was designed for instant measurement of thermal well-being levels, light intensity, and air gas concentration. This hardware integrated DHT11 sensors, an LDR photoresistor, and an MQ-135 sensor. To validate the system, a 30-day experimental study was conducted in an industrial pig farming setting. The collected data was sent to the Thingspeak server using the HTTP protocol. Data management, filtering, and organization were optimized using developed treatment algorithms. The system presented information on air humidity, temperature, ammonia concentration, CO 2 levels, luminosity, and enthalpy through interactive images on a dashboard. In the case of a risk situation, the system automatically notified users with an \"ALERT\" message, facilitating prompt and efficient management response, and minimizing losses. The sensor calibration process yielded a high coefficient of determination (r² = 0.98). Thus, the developed IoT device represents a viable solution, providing precise environmental conditions to support producers and enhance their efficiency and sustainability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"INTELLIGENT AUTOMATED MONITORING INTEGRATED WITH ANIMAL PRODUCTION FACILITIES\",\"authors\":\"R. C. Santos, André L. N. Lopes, A. C. Sanches, E. P. Gomes, Edlaine A. S. da Silva, Jhon L. B. da Silva\",\"doi\":\"10.1590/1809-4430-eng.agric.v43n2e20220225/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing population and demand for animal-derived products has raised the need for improved efficiency in managing and controlling animal production. Given this context, the project aimed to develop a device that aids decision-making in animal production. A hardware system was designed for instant measurement of thermal well-being levels, light intensity, and air gas concentration. This hardware integrated DHT11 sensors, an LDR photoresistor, and an MQ-135 sensor. To validate the system, a 30-day experimental study was conducted in an industrial pig farming setting. The collected data was sent to the Thingspeak server using the HTTP protocol. Data management, filtering, and organization were optimized using developed treatment algorithms. The system presented information on air humidity, temperature, ammonia concentration, CO 2 levels, luminosity, and enthalpy through interactive images on a dashboard. In the case of a risk situation, the system automatically notified users with an \\\"ALERT\\\" message, facilitating prompt and efficient management response, and minimizing losses. The sensor calibration process yielded a high coefficient of determination (r² = 0.98). Thus, the developed IoT device represents a viable solution, providing precise environmental conditions to support producers and enhance their efficiency and sustainability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220225/2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220225/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
INTELLIGENT AUTOMATED MONITORING INTEGRATED WITH ANIMAL PRODUCTION FACILITIES
Increasing population and demand for animal-derived products has raised the need for improved efficiency in managing and controlling animal production. Given this context, the project aimed to develop a device that aids decision-making in animal production. A hardware system was designed for instant measurement of thermal well-being levels, light intensity, and air gas concentration. This hardware integrated DHT11 sensors, an LDR photoresistor, and an MQ-135 sensor. To validate the system, a 30-day experimental study was conducted in an industrial pig farming setting. The collected data was sent to the Thingspeak server using the HTTP protocol. Data management, filtering, and organization were optimized using developed treatment algorithms. The system presented information on air humidity, temperature, ammonia concentration, CO 2 levels, luminosity, and enthalpy through interactive images on a dashboard. In the case of a risk situation, the system automatically notified users with an "ALERT" message, facilitating prompt and efficient management response, and minimizing losses. The sensor calibration process yielded a high coefficient of determination (r² = 0.98). Thus, the developed IoT device represents a viable solution, providing precise environmental conditions to support producers and enhance their efficiency and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信