{"title":"红花采摘机器人控制系统设计及多传感器融合定位研究","authors":"Guomin Gao, Hui Guo, Wei Zhou, Dan Luo, J. Zhang","doi":"10.1590/1809-4430-eng.agric.v43n2e20210238/2023","DOIUrl":null,"url":null,"abstract":"This paper discusses the design of a safflower picking robot control system and focuses on a navigation control subsystem based on multisensor fusion. A navigation subsystem, an identification and positioning subsystem, a picking subsystem, and a levelling subsystem are designed. The hardware and software of the navigation subsystem are designed in detail, and a multisensor fusion positioning method based on extended Kalman fusion technology is proposed. The accuracy and stability levels of different combined navigation methods are compared. To test the effectiveness and accuracy of the proposed method, an outdoor test is carried out. The test results show that the outdoor fusion positioning accuracy of the robot is less than 8 cm, and when the satellite signal is lost, the navigation control subsystem can still provide high positioning accuracy. The final positioning result obtained using the integrated positioning method of the","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DESIGN OF A CONTROL SYSTEM FOR A SAFFLOWER PICKING ROBOT AND RESEARCH ON MULTISENSOR FUSION POSITIONING\",\"authors\":\"Guomin Gao, Hui Guo, Wei Zhou, Dan Luo, J. Zhang\",\"doi\":\"10.1590/1809-4430-eng.agric.v43n2e20210238/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design of a safflower picking robot control system and focuses on a navigation control subsystem based on multisensor fusion. A navigation subsystem, an identification and positioning subsystem, a picking subsystem, and a levelling subsystem are designed. The hardware and software of the navigation subsystem are designed in detail, and a multisensor fusion positioning method based on extended Kalman fusion technology is proposed. The accuracy and stability levels of different combined navigation methods are compared. To test the effectiveness and accuracy of the proposed method, an outdoor test is carried out. The test results show that the outdoor fusion positioning accuracy of the robot is less than 8 cm, and when the satellite signal is lost, the navigation control subsystem can still provide high positioning accuracy. The final positioning result obtained using the integrated positioning method of the\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20210238/2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20210238/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DESIGN OF A CONTROL SYSTEM FOR A SAFFLOWER PICKING ROBOT AND RESEARCH ON MULTISENSOR FUSION POSITIONING
This paper discusses the design of a safflower picking robot control system and focuses on a navigation control subsystem based on multisensor fusion. A navigation subsystem, an identification and positioning subsystem, a picking subsystem, and a levelling subsystem are designed. The hardware and software of the navigation subsystem are designed in detail, and a multisensor fusion positioning method based on extended Kalman fusion technology is proposed. The accuracy and stability levels of different combined navigation methods are compared. To test the effectiveness and accuracy of the proposed method, an outdoor test is carried out. The test results show that the outdoor fusion positioning accuracy of the robot is less than 8 cm, and when the satellite signal is lost, the navigation control subsystem can still provide high positioning accuracy. The final positioning result obtained using the integrated positioning method of the