J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro
{"title":"MQ-3型豇豆种子乙醇含量传感器的稳定性研究","authors":"J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro","doi":"10.1590/1809-4430-eng.agric.v43n2e20200046/2023","DOIUrl":null,"url":null,"abstract":"The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of an MQ-3 Sensor for Ethanol Measurement in Cowpea Seeds\",\"authors\":\"J. A. Cavalcante, Augusto H. M. Silva, G. I. Gadotti, Ádamo S. de Araújo, R. D. C. M. Monteiro\",\"doi\":\"10.1590/1809-4430-eng.agric.v43n2e20200046/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20200046/2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20200046/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stabilization of an MQ-3 Sensor for Ethanol Measurement in Cowpea Seeds
The widespread adoption of sensor technology has made it a standard practice for obtaining precise and timely information during the harvest and post-harvest periods. One sensor that has gained popularity for post-harvest seed monitoring is the MQ-3, which identifies ethanol in the air as products undergo fermentation. However, these sensors typically require a stable operation. This study aimed to assess the stabilization time of an MQ-3 sensor when measuring ethanol levels in anaerobic bean seeds. We used six bean seed samples, each with an average moisture content of around 14%. We employed a completely randomized experimental design with nine repetitions for each sample. Every repetition consisted of 25 bean seeds placed in sealed flasks containing 70 mL of distilled water. This setup induced anoxic conditions within the flask, promoting anaerobic respiration in the seeds. After 24 hours, we exposed an air sample to the MQ-3 sensor and took readings at various time intervals (12-14, 19-21, 36-38, 68-70, 130-132, 192-194, 314-316, 616-618 seconds). The average stabilization time for the MQ-3 sensor while quantifying ethanol concentrations in the bean samples were approximately 23 seconds. The sensor demonstrated efficacy, convenience, and rapidity in assessing ethanol levels in anaerobic bean seeds.