Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro
{"title":"种子批次排序的拟合数据挖掘设置","authors":"Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro","doi":"10.1590/1809-4430-eng.agric.v43n2e20220193/2023","DOIUrl":null,"url":null,"abstract":"To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FITTING Data Mining Settings for Ranking Seed Lots\",\"authors\":\"Ruan Bernardy, G. I. Gadotti, R. D. C. M. Monteiro, Karine Von Ahn Pinto, R. D. Pinheiro\",\"doi\":\"10.1590/1809-4430-eng.agric.v43n2e20220193/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220193/2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1809-4430-eng.agric.v43n2e20220193/2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FITTING Data Mining Settings for Ranking Seed Lots
To enhance speed and agility in interpreting physiological quality tests of seeds, The use of algorithms has emerged. This study aimed to identify suitable machine learning models to assist in the precise management of seed lot quality. Soybean lots from two companies were assessed using the Supplied Test Set, Cross-Validation (with 8, 10, and 12 folds), and Percentage Split (with 66% and 70%) methods. Variables analyzed through Tetrazolium tests included vigor, viability, mechanical damage, moisture damage, bed bug damage, and water content. Method performance was determined by Kappa, Precision, and ROC Area metrics. Classification Via Regression and J48 algorithms were employed. The technique utilizing 66% of data for training achieved 93.55% accuracy, with Precision and ROC Area reaching