基于BLPP-2000和BLPP 4000光电探测器阵列的MAES多通道分析仪动态范围扩展

Q4 Chemistry
S. Babin, V. А. Labusov, D. O. Selyunin, O. V. Pelipasov
{"title":"基于BLPP-2000和BLPP 4000光电探测器阵列的MAES多通道分析仪动态范围扩展","authors":"S. Babin, V. А. Labusov, D. O. Selyunin, O. V. Pelipasov","doi":"10.15826/analitika.2021.25.4.011","DOIUrl":null,"url":null,"abstract":"One trend in the development of integral atomic emission spectral analysis with low spectral background excitation sources, such as inductively coupled or microwave plasma, is to increase the dynamic range of spectrum recording systems based on photodetector arrays. To achieve low detection limits, it is necessary to use photodetector arrays with low reading noise. The dynamic range of a single readout of such photodetector arrays usually does not exceed four orders of magnitude. The dynamic range increase due to the accumulation of spectra from multiple acquisition leads to a quadratic increase in the measurement time. This method does not allow one to cover the entire dynamic range of spectral line intensities of inductively coupled or microwave plasma (which can reach seven orders of magnitude) while maintaining an acceptable total measurement time of a sample spectrum. As an alternative, it is proposed to increase the dynamic range toward higher line intensities by using two different alternating accumulation times during measurement. The objective of this study is to implement the proposed recording mode in MAES analyzers based on BLPP-2000 and BLPP-4000 photodetector arrays in order to increase the dynamic range of recorded spectral lines. Dependences of the signal-to-noise ratio and the dynamic range of spectral lines recorded in integral atomic emission spectrometry on the accumulation time, the total measurement time, the spectral background level, and the photodetector array parameters are obtained. It is shown theoretically that the use of the recording mode with alternating different accumulation times should increase the dynamic range of BLPP-2000 and BLPP-4000 photodetector arrays by two orders of magnitude. The dynamic range of spectral line intensities of a hollow-cathode lamp is shown experimentally to increase by two orders of magnitude (to five orders of magnitude).","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic-range extension of MAES multichannel analyzers based on BLPP-2000 and BLPP 4000 photodetector arrays\",\"authors\":\"S. Babin, V. А. Labusov, D. O. Selyunin, O. V. Pelipasov\",\"doi\":\"10.15826/analitika.2021.25.4.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One trend in the development of integral atomic emission spectral analysis with low spectral background excitation sources, such as inductively coupled or microwave plasma, is to increase the dynamic range of spectrum recording systems based on photodetector arrays. To achieve low detection limits, it is necessary to use photodetector arrays with low reading noise. The dynamic range of a single readout of such photodetector arrays usually does not exceed four orders of magnitude. The dynamic range increase due to the accumulation of spectra from multiple acquisition leads to a quadratic increase in the measurement time. This method does not allow one to cover the entire dynamic range of spectral line intensities of inductively coupled or microwave plasma (which can reach seven orders of magnitude) while maintaining an acceptable total measurement time of a sample spectrum. As an alternative, it is proposed to increase the dynamic range toward higher line intensities by using two different alternating accumulation times during measurement. The objective of this study is to implement the proposed recording mode in MAES analyzers based on BLPP-2000 and BLPP-4000 photodetector arrays in order to increase the dynamic range of recorded spectral lines. Dependences of the signal-to-noise ratio and the dynamic range of spectral lines recorded in integral atomic emission spectrometry on the accumulation time, the total measurement time, the spectral background level, and the photodetector array parameters are obtained. It is shown theoretically that the use of the recording mode with alternating different accumulation times should increase the dynamic range of BLPP-2000 and BLPP-4000 photodetector arrays by two orders of magnitude. The dynamic range of spectral line intensities of a hollow-cathode lamp is shown experimentally to increase by two orders of magnitude (to five orders of magnitude).\",\"PeriodicalId\":37743,\"journal\":{\"name\":\"Analitika i Kontrol\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analitika i Kontrol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/analitika.2021.25.4.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analitika i Kontrol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/analitika.2021.25.4.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

利用低背景激发源(如电感耦合或微波等离子体)进行积分原子发射光谱分析的一个发展趋势是增加基于光电探测器阵列的光谱记录系统的动态范围。为了达到低检测限,必须使用具有低读数噪声的光电探测器阵列。这种光电探测器阵列的单次读出的动态范围通常不超过四个数量级。由于多次采集光谱的积累,动态范围的增加导致测量时间的二次增长。这种方法不能覆盖电感耦合或微波等离子体(可达到7个数量级)的整个谱线强度的动态范围,同时保持样品光谱的可接受的总测量时间。作为一种替代方案,建议通过在测量期间使用两个不同的交替积累时间来增加向更高线强度的动态范围。本研究的目的是在基于BLPP-2000和BLPP-4000光电探测器阵列的MAES分析仪中实现所提出的记录模式,以增加记录谱线的动态范围。得到了累积时间、总测量时间、光谱背景电平和光电探测器阵列参数与积分原子发射光谱记录谱线的信噪比和动态范围的关系。理论上表明,采用交替不同积累时间的记录方式,可以使BLPP-2000和BLPP-4000光电探测器阵列的动态范围提高两个数量级。实验表明,空心阴极灯光谱线强度的动态范围增加了两个数量级(到五个数量级)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic-range extension of MAES multichannel analyzers based on BLPP-2000 and BLPP 4000 photodetector arrays
One trend in the development of integral atomic emission spectral analysis with low spectral background excitation sources, such as inductively coupled or microwave plasma, is to increase the dynamic range of spectrum recording systems based on photodetector arrays. To achieve low detection limits, it is necessary to use photodetector arrays with low reading noise. The dynamic range of a single readout of such photodetector arrays usually does not exceed four orders of magnitude. The dynamic range increase due to the accumulation of spectra from multiple acquisition leads to a quadratic increase in the measurement time. This method does not allow one to cover the entire dynamic range of spectral line intensities of inductively coupled or microwave plasma (which can reach seven orders of magnitude) while maintaining an acceptable total measurement time of a sample spectrum. As an alternative, it is proposed to increase the dynamic range toward higher line intensities by using two different alternating accumulation times during measurement. The objective of this study is to implement the proposed recording mode in MAES analyzers based on BLPP-2000 and BLPP-4000 photodetector arrays in order to increase the dynamic range of recorded spectral lines. Dependences of the signal-to-noise ratio and the dynamic range of spectral lines recorded in integral atomic emission spectrometry on the accumulation time, the total measurement time, the spectral background level, and the photodetector array parameters are obtained. It is shown theoretically that the use of the recording mode with alternating different accumulation times should increase the dynamic range of BLPP-2000 and BLPP-4000 photodetector arrays by two orders of magnitude. The dynamic range of spectral line intensities of a hollow-cathode lamp is shown experimentally to increase by two orders of magnitude (to five orders of magnitude).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analitika i Kontrol
Analitika i Kontrol Chemistry-Analytical Chemistry
CiteScore
0.90
自引率
0.00%
发文量
15
期刊介绍: Analitika i Kontrol is a scientific journal covering theoretical and applied aspects of analytical chemistry and analytical control, published since autumn 1997. Founder and publisher of the journal is the Ural Federal University named after the first President of Russia Boris Yeltsin (UrFU, Ekaterinburg).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信