无监督机器学习在种子干燥过程中的应用

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
R. D. Pinheiro, G. I. Gadotti, Ruan Bernardy, Rafael Rico Tim, Karine Von Ahn Pinto, Graciela Buck
{"title":"无监督机器学习在种子干燥过程中的应用","authors":"R. D. Pinheiro, G. I. Gadotti, Ruan Bernardy, Rafael Rico Tim, Karine Von Ahn Pinto, Graciela Buck","doi":"10.1590/1413-7054202347018922","DOIUrl":null,"url":null,"abstract":"ABSTRACT Analyzing the impact of harvest-time drying data is crucial for successful storage and maintaining regulatory seed quality. This study aimed to assess the performance of fixed and mobile dryers using machine learning techniques. Data were collected from convective dryers, including the total number of dryers used, drying time (in hours), moisture percentages at the product’s entrance and exit, and the humidity difference between them. The study employed the Filtered Clusterer model, which utilizes the Simple K-Means technique and the Resample filter to group data based on similarities. The findings indicated distinct differences between fixed and mobile drying systems, with well-defined variations within each system. The algorithm, combined with the applied filters, proved effective in unsupervised classification by identifying and reducing inter-cluster similarity within the fixed system, thereby creating distinct classes within the dataset. In conclusion, the algorithm successfully clustered the scattered dataset and accurately classified and minimized inter-cluster similarity within the fixed system. Conversely, the mobile system exhibited low drying efficiency.","PeriodicalId":10188,"journal":{"name":"Ciencia E Agrotecnologia","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer vision by unsupervised machine learning in seed drying process\",\"authors\":\"R. D. Pinheiro, G. I. Gadotti, Ruan Bernardy, Rafael Rico Tim, Karine Von Ahn Pinto, Graciela Buck\",\"doi\":\"10.1590/1413-7054202347018922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Analyzing the impact of harvest-time drying data is crucial for successful storage and maintaining regulatory seed quality. This study aimed to assess the performance of fixed and mobile dryers using machine learning techniques. Data were collected from convective dryers, including the total number of dryers used, drying time (in hours), moisture percentages at the product’s entrance and exit, and the humidity difference between them. The study employed the Filtered Clusterer model, which utilizes the Simple K-Means technique and the Resample filter to group data based on similarities. The findings indicated distinct differences between fixed and mobile drying systems, with well-defined variations within each system. The algorithm, combined with the applied filters, proved effective in unsupervised classification by identifying and reducing inter-cluster similarity within the fixed system, thereby creating distinct classes within the dataset. In conclusion, the algorithm successfully clustered the scattered dataset and accurately classified and minimized inter-cluster similarity within the fixed system. Conversely, the mobile system exhibited low drying efficiency.\",\"PeriodicalId\":10188,\"journal\":{\"name\":\"Ciencia E Agrotecnologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia E Agrotecnologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1413-7054202347018922\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Agrotecnologia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1413-7054202347018922","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要分析收获期干燥数据对种子成功贮藏和保持籽粒质量的影响至关重要。本研究旨在利用机器学习技术评估固定和移动烘干机的性能。从对流干燥机上收集数据,包括使用的干燥机总数,干燥时间(小时),产品入口和出口的水分百分比,以及两者之间的湿度差。该研究采用了Filtered Clusterer模型,该模型利用Simple K-Means技术和ressample过滤器根据相似性对数据进行分组。研究结果表明,固定和移动干燥系统之间存在明显差异,每个系统内部都有明确的变化。该算法与应用的过滤器相结合,通过识别和降低固定系统内的聚类间相似性,从而在数据集中创建不同的类,证明了该算法在无监督分类中是有效的。综上所述,该算法成功地对分散的数据集进行了聚类,并对固定系统内的聚类相似性进行了准确的分类和最小化。相反,移动系统的干燥效率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer vision by unsupervised machine learning in seed drying process
ABSTRACT Analyzing the impact of harvest-time drying data is crucial for successful storage and maintaining regulatory seed quality. This study aimed to assess the performance of fixed and mobile dryers using machine learning techniques. Data were collected from convective dryers, including the total number of dryers used, drying time (in hours), moisture percentages at the product’s entrance and exit, and the humidity difference between them. The study employed the Filtered Clusterer model, which utilizes the Simple K-Means technique and the Resample filter to group data based on similarities. The findings indicated distinct differences between fixed and mobile drying systems, with well-defined variations within each system. The algorithm, combined with the applied filters, proved effective in unsupervised classification by identifying and reducing inter-cluster similarity within the fixed system, thereby creating distinct classes within the dataset. In conclusion, the algorithm successfully clustered the scattered dataset and accurately classified and minimized inter-cluster similarity within the fixed system. Conversely, the mobile system exhibited low drying efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ciencia E Agrotecnologia
Ciencia E Agrotecnologia 农林科学-农业综合
CiteScore
2.30
自引率
9.10%
发文量
19
审稿时长
6-12 weeks
期刊介绍: A Ciência e Agrotecnologia, editada a cada 2 meses pela Editora da Universidade Federal de Lavras (UFLA), publica artigos científicos de interesse agropecuário elaborados por membros da comunidade científica nacional e internacional. A revista é distribuída em âmbito nacional e internacional para bibliotecas de Faculdades, Universidades e Instituições de Pesquisa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信