一种新型无直链淀粉木薯淀粉的热流变特性和可挤出性

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
Adriana Pulido Diaz, G. D. Valle, Freddy Forero Longas
{"title":"一种新型无直链淀粉木薯淀粉的热流变特性和可挤出性","authors":"Adriana Pulido Diaz, G. D. Valle, Freddy Forero Longas","doi":"10.1590/1413-7054202347014422","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cassava crops have always been fundamental in human nutrition and industry. Nowadays, the development of new cultivars with specific properties has become a major research area. In this research, amylose-free cassava starch (WXCS) extracted from clone AM206-5 was evaluated with respect to its physicochemical, morphological, and thermorheological properties. The waxy nature of cassava starch was verified (0.54 ± 0.09% w/w amylose), showing a 16.92±0.20 µm average granule size and elliptical or spherical truncated shapes without granule aggregation. There were significant differences in the pasting profiles evaluated, with WXCS being thermally less stable (Breakdown = 698±2 cP) generating less viscous final pastes (731±16 cP) compared to a commercial amylose-free corn starch. The WXCS shear viscosity was determined in a capillary rheometer (Rheoplast®), showing an inverse linear temperature dependence, decreasing by a factor larger than 3 when the temperature changed from 100 to 120 °C, with a pseudoplastic flow described by the power law (n: 0.25-0.40), consistency index (32607 - 6695 Pa.s) and specific mechanical energy (124 - 75 J/g). The extensional viscosity was always higher than the shear viscosity, where increasing the strain rate and temperature enlarged the Trouton number (25-145). Complete WXCS transformation under real process conditions was achieved with a 30% w/w moisture content and 100 °C, which induced full granular integrity loss and crystalline structure destruction. The results confirmed a potential utilization for this new starch to obtain extruded-type food products or to serve as a biothickening agent.","PeriodicalId":10188,"journal":{"name":"Ciencia E Agrotecnologia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermorheological characteristics and extrudability aptitude of a new amylose-free cassava starch\",\"authors\":\"Adriana Pulido Diaz, G. D. Valle, Freddy Forero Longas\",\"doi\":\"10.1590/1413-7054202347014422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cassava crops have always been fundamental in human nutrition and industry. Nowadays, the development of new cultivars with specific properties has become a major research area. In this research, amylose-free cassava starch (WXCS) extracted from clone AM206-5 was evaluated with respect to its physicochemical, morphological, and thermorheological properties. The waxy nature of cassava starch was verified (0.54 ± 0.09% w/w amylose), showing a 16.92±0.20 µm average granule size and elliptical or spherical truncated shapes without granule aggregation. There were significant differences in the pasting profiles evaluated, with WXCS being thermally less stable (Breakdown = 698±2 cP) generating less viscous final pastes (731±16 cP) compared to a commercial amylose-free corn starch. The WXCS shear viscosity was determined in a capillary rheometer (Rheoplast®), showing an inverse linear temperature dependence, decreasing by a factor larger than 3 when the temperature changed from 100 to 120 °C, with a pseudoplastic flow described by the power law (n: 0.25-0.40), consistency index (32607 - 6695 Pa.s) and specific mechanical energy (124 - 75 J/g). The extensional viscosity was always higher than the shear viscosity, where increasing the strain rate and temperature enlarged the Trouton number (25-145). Complete WXCS transformation under real process conditions was achieved with a 30% w/w moisture content and 100 °C, which induced full granular integrity loss and crystalline structure destruction. The results confirmed a potential utilization for this new starch to obtain extruded-type food products or to serve as a biothickening agent.\",\"PeriodicalId\":10188,\"journal\":{\"name\":\"Ciencia E Agrotecnologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia E Agrotecnologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1413-7054202347014422\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Agrotecnologia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1413-7054202347014422","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

木薯作物一直是人类营养和工业的基础。目前,培育具有特定性状的新品种已成为一个重要的研究领域。本研究从木薯无性系AM206-5中提取无直链淀粉(WXCS),对其理化、形态和热流变特性进行了评价。证实了木薯淀粉的蜡质性质(0.54±0.09% w/w直链淀粉),平均颗粒大小为16.92±0.20µm,呈椭圆形或球形截形,无颗粒聚集。与商用无直链淀粉玉米淀粉相比,WXCS的热稳定性较差(分解值为698±2 cP),最终糊状物的粘性较低(731±16 cP)。WXCS剪切粘度在毛细管流变仪(Rheoplast®)中测定,显示出反线性温度依赖性,当温度从100°C变化到120°C时,其下降系数大于3,具有幂律(n: 0.25-0.40),稠度指数(32607 - 6695 Pa.s)和比机械能(124 - 75 J/g)描述的假塑性流动。拉伸黏度始终高于剪切黏度,随着应变速率和温度的升高,Trouton数增大(25 ~ 145)。在实际工艺条件下,当水分含量为30% w/w,温度为100℃时,WXCS完全转变,导致颗粒完整性完全丧失,晶体结构破坏。结果证实了这种新型淀粉在制备膨化食品或作为生物增稠剂方面具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermorheological characteristics and extrudability aptitude of a new amylose-free cassava starch
ABSTRACT Cassava crops have always been fundamental in human nutrition and industry. Nowadays, the development of new cultivars with specific properties has become a major research area. In this research, amylose-free cassava starch (WXCS) extracted from clone AM206-5 was evaluated with respect to its physicochemical, morphological, and thermorheological properties. The waxy nature of cassava starch was verified (0.54 ± 0.09% w/w amylose), showing a 16.92±0.20 µm average granule size and elliptical or spherical truncated shapes without granule aggregation. There were significant differences in the pasting profiles evaluated, with WXCS being thermally less stable (Breakdown = 698±2 cP) generating less viscous final pastes (731±16 cP) compared to a commercial amylose-free corn starch. The WXCS shear viscosity was determined in a capillary rheometer (Rheoplast®), showing an inverse linear temperature dependence, decreasing by a factor larger than 3 when the temperature changed from 100 to 120 °C, with a pseudoplastic flow described by the power law (n: 0.25-0.40), consistency index (32607 - 6695 Pa.s) and specific mechanical energy (124 - 75 J/g). The extensional viscosity was always higher than the shear viscosity, where increasing the strain rate and temperature enlarged the Trouton number (25-145). Complete WXCS transformation under real process conditions was achieved with a 30% w/w moisture content and 100 °C, which induced full granular integrity loss and crystalline structure destruction. The results confirmed a potential utilization for this new starch to obtain extruded-type food products or to serve as a biothickening agent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ciencia E Agrotecnologia
Ciencia E Agrotecnologia 农林科学-农业综合
CiteScore
2.30
自引率
9.10%
发文量
19
审稿时长
6-12 weeks
期刊介绍: A Ciência e Agrotecnologia, editada a cada 2 meses pela Editora da Universidade Federal de Lavras (UFLA), publica artigos científicos de interesse agropecuário elaborados por membros da comunidade científica nacional e internacional. A revista é distribuída em âmbito nacional e internacional para bibliotecas de Faculdades, Universidades e Instituições de Pesquisa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信