{"title":"三维海森堡群的运动公式","authors":"Yen-Chang Huang","doi":"10.1515/agms-2016-0020","DOIUrl":null,"url":null,"abstract":"By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The kinematic formula in the 3D-Heisenberg group\",\"authors\":\"Yen-Chang Huang\",\"doi\":\"10.1515/agms-2016-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\\\\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\\\\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2016-0020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2016-0020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.