三维海森堡群的运动公式

Pub Date : 2016-09-10 DOI:10.1515/agms-2016-0020
Yen-Chang Huang
{"title":"三维海森堡群的运动公式","authors":"Yen-Chang Huang","doi":"10.1515/agms-2016-0020","DOIUrl":null,"url":null,"abstract":"By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The kinematic formula in the 3D-Heisenberg group\",\"authors\":\"Yen-Chang Huang\",\"doi\":\"10.1515/agms-2016-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\\\\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\\\\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2016-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2016-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过研究3D-Heisenberg群H_1$中的刚性运动群PSH(1)$,定义了水平线集合的密度和测度。我们证明了凸域$D\子集H_1$的体积等于弦长在与$D$相交的所有水平线上的积分。作为积分几何中的经典结果,我们还定义了PSH(1)$的运动密度,并给出了在$v$包含在$D_0$中的条件下,将向量$v$抛掷到凸域$D\子集D_0$中的概率。这两个结果都显示了Cheng-Hwang-Malchiodi-Yang用变分方法研究的几何概率与自然几何量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The kinematic formula in the 3D-Heisenberg group
By studying the group of rigid motions, $PSH(1)$, in the 3D-Heisenberg group $H_1$, we define the density and the measure for the sets of horizontal lines. We show that the volume of a convex domain $D\subset H_1$ is equal to the integral of length of chord over all horizontal lines intersecting $D$. As the classical result in integral geometry, we also define the kinematic density for $PSH(1)$ and show the probability of randomly throwing a vector $v$ interesting the convex domain $D\subset D_0$ under the condition that $v$ is contained in $D_0$. Both results show the relationship connecting the geometric probability and the natural geometric quantity in Cheng-Hwang-Malchiodi-Yang's work approached by the variational method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信