拟等距不需要在Gromov积拓扑下导出收缩边界的同胚

Pub Date : 2016-05-05 DOI:10.1515/agms-2016-0011
Christopher H. Cashen
{"title":"拟等距不需要在Gromov积拓扑下导出收缩边界的同胚","authors":"Christopher H. Cashen","doi":"10.1515/agms-2016-0011","DOIUrl":null,"url":null,"abstract":"Abstract We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic space.We topologize this set via the Gromov product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can fail even when the spaces are required to be CAT(0). We show this by constructing an explicit example.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quasi-Isometries Need Not Induce Homeomorphisms of Contracting Boundaries with the Gromov Product Topology\",\"authors\":\"Christopher H. Cashen\",\"doi\":\"10.1515/agms-2016-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic space.We topologize this set via the Gromov product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can fail even when the spaces are required to be CAT(0). We show this by constructing an explicit example.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2016-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2016-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

摘要:我们考虑了一个固有测地线度量空间的“收缩边界”,该空间由与双曲空间中的测地线相似的等价类测地线射线组成。我们通过格罗莫夫积对这个集合进行拓扑化,类似于双曲空间边界的拓扑。我们证明了当空间不是双曲的时候,拟等距并不一定给出这个边界的同胚。即使要求空格为CAT(0),连续性也可能失效。我们通过构造一个显式示例来说明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quasi-Isometries Need Not Induce Homeomorphisms of Contracting Boundaries with the Gromov Product Topology
Abstract We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic space.We topologize this set via the Gromov product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can fail even when the spaces are required to be CAT(0). We show this by constructing an explicit example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信