金曼花的吸收时间、树长与甘贝尔分布

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
M. Möhle
{"title":"金曼花的吸收时间、树长与甘贝尔分布","authors":"M. Möhle","doi":"10.15496/PUBLIKATION-9137","DOIUrl":null,"url":null,"abstract":"Formulas are provided for the cumulants and the moments of the time T back to the most recent common ancestor of the Kingman coalescent. It is shown that both the jth cumulant and the jth moment of T are linear combinations of the values ζ(2m), m ∈ {0, . . . , bj/2c}, of the Riemann zeta function ζ with integer coefficients. The proof is based on a solution of a two-dimensional recursion with countably many initial values. A closely related strong convergence result for the tree length Ln of the Kingman coalescent restricted to a sample of size n is derived. The results give reason to revisit the moments and central moments of the classical Gumbel distribution.","PeriodicalId":48890,"journal":{"name":"Markov Processes and Related Fields","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Absorption Time and Tree Length of the Kingman Coalescent and the Gumbel Distribution\",\"authors\":\"M. Möhle\",\"doi\":\"10.15496/PUBLIKATION-9137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulas are provided for the cumulants and the moments of the time T back to the most recent common ancestor of the Kingman coalescent. It is shown that both the jth cumulant and the jth moment of T are linear combinations of the values ζ(2m), m ∈ {0, . . . , bj/2c}, of the Riemann zeta function ζ with integer coefficients. The proof is based on a solution of a two-dimensional recursion with countably many initial values. A closely related strong convergence result for the tree length Ln of the Kingman coalescent restricted to a sample of size n is derived. The results give reason to revisit the moments and central moments of the classical Gumbel distribution.\",\"PeriodicalId\":48890,\"journal\":{\"name\":\"Markov Processes and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Markov Processes and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15496/PUBLIKATION-9137\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Markov Processes and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15496/PUBLIKATION-9137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

公式提供了累积量和时间的时刻T回到最近的共同祖先的金曼聚结。证明了T的第j个累积量和第j个矩是下列值的线性组合:ζ(2m), m∈{0,…, bj/2c},具有整数系数的黎曼ζ函数。该证明是基于一个具有可数多个初值的二维递归的解。在样本大小为n的情况下,导出了Kingman聚结的树长Ln的一个密切相关的强收敛结果。这些结果使我们有理由重新审视经典冈贝尔分布的矩和中心矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absorption Time and Tree Length of the Kingman Coalescent and the Gumbel Distribution
Formulas are provided for the cumulants and the moments of the time T back to the most recent common ancestor of the Kingman coalescent. It is shown that both the jth cumulant and the jth moment of T are linear combinations of the values ζ(2m), m ∈ {0, . . . , bj/2c}, of the Riemann zeta function ζ with integer coefficients. The proof is based on a solution of a two-dimensional recursion with countably many initial values. A closely related strong convergence result for the tree length Ln of the Kingman coalescent restricted to a sample of size n is derived. The results give reason to revisit the moments and central moments of the classical Gumbel distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Markov Processes and Related Fields
Markov Processes and Related Fields STATISTICS & PROBABILITY-
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: Markov Processes And Related Fields The Journal focuses on mathematical modelling of today''s enormous wealth of problems from modern technology, like artificial intelligence, large scale networks, data bases, parallel simulation, computer architectures, etc. Research papers, reviews, tutorial papers and additionally short explanations of new applied fields and new mathematical problems in the above fields are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信