亚马逊棕榈原始和热化学处理中果皮纤维的特性

IF 0.7 4区 农林科学 Q3 FORESTRY
Cerne Pub Date : 2023-06-23 DOI:10.1590/01047760202329013219
O. Cruz, Matheus Cordazzo Dias, D. N. P. S. Oliveira, M. G. Silva, T. M. Souza, L. Mendes, Lays Camila Matos, L. Bufalino
{"title":"亚马逊棕榈原始和热化学处理中果皮纤维的特性","authors":"O. Cruz, Matheus Cordazzo Dias, D. N. P. S. Oliveira, M. G. Silva, T. M. Souza, L. Mendes, Lays Camila Matos, L. Bufalino","doi":"10.1590/01047760202329013219","DOIUrl":null,"url":null,"abstract":"Background: Patauá ( Oenocarpus bataua Mart.) is a palm tree belonging to the botanical family Arecaceae that occurs throughout the Amazon. Like açaí, an edible pulp is extracted from its fruits, remaining a fiber-rich waste. Revealing the potential of such raw or thermochemically modified fibers for producing bioproducts is a novelty in the literature. Therefore, this work aimed to characterize patauá fibers in natural and alkali-treated conditions to support future bioproduct applications. Alkaline treatments were performed under mechanical stirring combining two NaOH levels (5 and 10%) and two temperatures (80 and 100°C). Morphological characterization was performed by light microscopy and scanning electron microscopy (SEM). The contents of the structural and non-structural chemical components were determined, and chemical groups were evaluated by Fourier-transform infrared spectroscopy (FTIR). The physical characterization included moisture content, apparent density, and water absorption tests. Results: The macerate revealed short fibers with typical elongated morphology, mean cell wall thickness (4.10 µm) greater than the mean lumen width (3.01 µm), and mean length of 445 µm. The alkaline treatments partially individualized the fibers from bundles, cleaned extractives from the surface, and unblocked superficial pits by removing silica-rich structures. They substantially removed non-cellulosic components, but FTIR showed condensed lignin exposed on the fiber surface. Density and water uptake increased concerning natural fibers. Patauá’s short length and susceptibility to modification through thermochemical treatments that concentrated cellulose up to 50% indicated great potential for developing composites and nanofibers. Regardless of the NaOH content, 100°C was more efficient in concentrating cellulose. Conclusion: Patauá fibers have unique natural characteristics. They occur as flatted fiber bundles, have silicon-rich structures obstructing their superficial pits, and comprise more lignin than cellulose.","PeriodicalId":50705,"journal":{"name":"Cerne","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of raw and thermochemically-treated mesocarp fibers of Oenocarpus bataua, an Amazon palm\",\"authors\":\"O. Cruz, Matheus Cordazzo Dias, D. N. P. S. Oliveira, M. G. Silva, T. M. Souza, L. Mendes, Lays Camila Matos, L. Bufalino\",\"doi\":\"10.1590/01047760202329013219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Patauá ( Oenocarpus bataua Mart.) is a palm tree belonging to the botanical family Arecaceae that occurs throughout the Amazon. Like açaí, an edible pulp is extracted from its fruits, remaining a fiber-rich waste. Revealing the potential of such raw or thermochemically modified fibers for producing bioproducts is a novelty in the literature. Therefore, this work aimed to characterize patauá fibers in natural and alkali-treated conditions to support future bioproduct applications. Alkaline treatments were performed under mechanical stirring combining two NaOH levels (5 and 10%) and two temperatures (80 and 100°C). Morphological characterization was performed by light microscopy and scanning electron microscopy (SEM). The contents of the structural and non-structural chemical components were determined, and chemical groups were evaluated by Fourier-transform infrared spectroscopy (FTIR). The physical characterization included moisture content, apparent density, and water absorption tests. Results: The macerate revealed short fibers with typical elongated morphology, mean cell wall thickness (4.10 µm) greater than the mean lumen width (3.01 µm), and mean length of 445 µm. The alkaline treatments partially individualized the fibers from bundles, cleaned extractives from the surface, and unblocked superficial pits by removing silica-rich structures. They substantially removed non-cellulosic components, but FTIR showed condensed lignin exposed on the fiber surface. Density and water uptake increased concerning natural fibers. Patauá’s short length and susceptibility to modification through thermochemical treatments that concentrated cellulose up to 50% indicated great potential for developing composites and nanofibers. Regardless of the NaOH content, 100°C was more efficient in concentrating cellulose. Conclusion: Patauá fibers have unique natural characteristics. They occur as flatted fiber bundles, have silicon-rich structures obstructing their superficial pits, and comprise more lignin than cellulose.\",\"PeriodicalId\":50705,\"journal\":{\"name\":\"Cerne\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerne\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/01047760202329013219\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerne","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/01047760202329013219","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of raw and thermochemically-treated mesocarp fibers of Oenocarpus bataua, an Amazon palm
Background: Patauá ( Oenocarpus bataua Mart.) is a palm tree belonging to the botanical family Arecaceae that occurs throughout the Amazon. Like açaí, an edible pulp is extracted from its fruits, remaining a fiber-rich waste. Revealing the potential of such raw or thermochemically modified fibers for producing bioproducts is a novelty in the literature. Therefore, this work aimed to characterize patauá fibers in natural and alkali-treated conditions to support future bioproduct applications. Alkaline treatments were performed under mechanical stirring combining two NaOH levels (5 and 10%) and two temperatures (80 and 100°C). Morphological characterization was performed by light microscopy and scanning electron microscopy (SEM). The contents of the structural and non-structural chemical components were determined, and chemical groups were evaluated by Fourier-transform infrared spectroscopy (FTIR). The physical characterization included moisture content, apparent density, and water absorption tests. Results: The macerate revealed short fibers with typical elongated morphology, mean cell wall thickness (4.10 µm) greater than the mean lumen width (3.01 µm), and mean length of 445 µm. The alkaline treatments partially individualized the fibers from bundles, cleaned extractives from the surface, and unblocked superficial pits by removing silica-rich structures. They substantially removed non-cellulosic components, but FTIR showed condensed lignin exposed on the fiber surface. Density and water uptake increased concerning natural fibers. Patauá’s short length and susceptibility to modification through thermochemical treatments that concentrated cellulose up to 50% indicated great potential for developing composites and nanofibers. Regardless of the NaOH content, 100°C was more efficient in concentrating cellulose. Conclusion: Patauá fibers have unique natural characteristics. They occur as flatted fiber bundles, have silicon-rich structures obstructing their superficial pits, and comprise more lignin than cellulose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerne
Cerne 农林科学-林学
CiteScore
1.60
自引率
0.00%
发文量
2
审稿时长
6-12 weeks
期刊介绍: Cerne is a journal edited by the Federal University of Lavras, Minas Gerais state, Brazil, which quarterly publishes original articles that represent relevant contribution to Forestry Science development (Forest ecology, Forest Management, Silviculture, Technology of Forest Products).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信