Carla Talita Pertille, Marcos Filipe Nicoletti, Mário Dobner Jr.
{"title":"利用主动和被动传感器估算红松人工林的商业用材量","authors":"Carla Talita Pertille, Marcos Filipe Nicoletti, Mário Dobner Jr.","doi":"10.1590/01047760202329013108","DOIUrl":null,"url":null,"abstract":"Background: The objective of this study was to estimate the wood volume of a Pinus taeda L. plantation using variables extracted from the Sentinel-1 active sensor and the Sentinel-2 passive sensor. To do so, data from a forest inventory with rectangular plots of 550 m² were used to estimate the stand volume. We derived and adapted average vegetation indices per plot from images obtained by Sentinel-1 and Sentinel-2 sensors. The data were then correlated with the volume per plot based on the forest inventory. The Modified Radar Forest Degradation Index (mRDFI) showed the highest correlation for Sentinel-1 data, while the Difference Vegetation-Index (DVI) performed best for Sentinel-2. Results: The regression models were built using Stepwise modeling, demonstrating that the models fit with only the Sentinel-2 indices performed better than the others (indices adapted for Sentinel-1 and a combination of Sentinel-1 and Sentinel-2 data), with an R² adjusted between 0.51 to 0.40 and a standard error (Syx%) of 3.66 to 8.97. According to the statistical analyses, we found no significant differences between the volume estimated by the forest inventory (12.56±1.17) and the remote sensing techniques used (Sentinel-2 with 12.56±1.03 and Sentinel-1 with 12.56±0.94). However, further tests should be conducted with other active sensors operating in different spectral bands and polarization modes for other forest species. Conclusion: We found no significant differences between the volumetric estimates derived from remote sensing data and forest inventory techniques.","PeriodicalId":50705,"journal":{"name":"Cerne","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the commercial volume of a Pinus taeda L. plantation using active and passive sensors\",\"authors\":\"Carla Talita Pertille, Marcos Filipe Nicoletti, Mário Dobner Jr.\",\"doi\":\"10.1590/01047760202329013108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The objective of this study was to estimate the wood volume of a Pinus taeda L. plantation using variables extracted from the Sentinel-1 active sensor and the Sentinel-2 passive sensor. To do so, data from a forest inventory with rectangular plots of 550 m² were used to estimate the stand volume. We derived and adapted average vegetation indices per plot from images obtained by Sentinel-1 and Sentinel-2 sensors. The data were then correlated with the volume per plot based on the forest inventory. The Modified Radar Forest Degradation Index (mRDFI) showed the highest correlation for Sentinel-1 data, while the Difference Vegetation-Index (DVI) performed best for Sentinel-2. Results: The regression models were built using Stepwise modeling, demonstrating that the models fit with only the Sentinel-2 indices performed better than the others (indices adapted for Sentinel-1 and a combination of Sentinel-1 and Sentinel-2 data), with an R² adjusted between 0.51 to 0.40 and a standard error (Syx%) of 3.66 to 8.97. According to the statistical analyses, we found no significant differences between the volume estimated by the forest inventory (12.56±1.17) and the remote sensing techniques used (Sentinel-2 with 12.56±1.03 and Sentinel-1 with 12.56±0.94). However, further tests should be conducted with other active sensors operating in different spectral bands and polarization modes for other forest species. Conclusion: We found no significant differences between the volumetric estimates derived from remote sensing data and forest inventory techniques.\",\"PeriodicalId\":50705,\"journal\":{\"name\":\"Cerne\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerne\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/01047760202329013108\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerne","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/01047760202329013108","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Estimating the commercial volume of a Pinus taeda L. plantation using active and passive sensors
Background: The objective of this study was to estimate the wood volume of a Pinus taeda L. plantation using variables extracted from the Sentinel-1 active sensor and the Sentinel-2 passive sensor. To do so, data from a forest inventory with rectangular plots of 550 m² were used to estimate the stand volume. We derived and adapted average vegetation indices per plot from images obtained by Sentinel-1 and Sentinel-2 sensors. The data were then correlated with the volume per plot based on the forest inventory. The Modified Radar Forest Degradation Index (mRDFI) showed the highest correlation for Sentinel-1 data, while the Difference Vegetation-Index (DVI) performed best for Sentinel-2. Results: The regression models were built using Stepwise modeling, demonstrating that the models fit with only the Sentinel-2 indices performed better than the others (indices adapted for Sentinel-1 and a combination of Sentinel-1 and Sentinel-2 data), with an R² adjusted between 0.51 to 0.40 and a standard error (Syx%) of 3.66 to 8.97. According to the statistical analyses, we found no significant differences between the volume estimated by the forest inventory (12.56±1.17) and the remote sensing techniques used (Sentinel-2 with 12.56±1.03 and Sentinel-1 with 12.56±0.94). However, further tests should be conducted with other active sensors operating in different spectral bands and polarization modes for other forest species. Conclusion: We found no significant differences between the volumetric estimates derived from remote sensing data and forest inventory techniques.
期刊介绍:
Cerne is a journal edited by the Federal University of Lavras, Minas Gerais state, Brazil, which quarterly publishes original articles that represent relevant contribution to Forestry Science development (Forest ecology, Forest Management, Silviculture, Technology of Forest Products).