使用copula进行长度偏倚生存数据的相关性测量

IF 0.6 Q4 STATISTICS & PROBABILITY
Rachid Bentoumi, M. Mesfioui, M. Alvo
{"title":"使用copula进行长度偏倚生存数据的相关性测量","authors":"Rachid Bentoumi, M. Mesfioui, M. Alvo","doi":"10.1515/demo-2019-0018","DOIUrl":null,"url":null,"abstract":"Abstract The linear correlation coefficient of Bravais-Pearson is considered a powerful indicator when the dependency relationship is linear and the error variate is normally distributed. Unfortunately in finance and in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based measures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-biased sampling, measures of the degree of dependence between the survival time and the covariates appear to have not received much intention in the literature. Our goal in this paper, is to provide an alternative indicator of dependence measure, based on the concept of information gain, using the parametric copulas. In particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed. The performance of the proposed method is demonstrated through simulations studies.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"348 - 364"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0018","citationCount":"1","resultStr":"{\"title\":\"Dependence measure for length-biased survival data using copulas\",\"authors\":\"Rachid Bentoumi, M. Mesfioui, M. Alvo\",\"doi\":\"10.1515/demo-2019-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The linear correlation coefficient of Bravais-Pearson is considered a powerful indicator when the dependency relationship is linear and the error variate is normally distributed. Unfortunately in finance and in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based measures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-biased sampling, measures of the degree of dependence between the survival time and the covariates appear to have not received much intention in the literature. Our goal in this paper, is to provide an alternative indicator of dependence measure, based on the concept of information gain, using the parametric copulas. In particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed. The performance of the proposed method is demonstrated through simulations studies.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"348 - 364\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0018\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

当依赖关系为线性且误差变量为正态分布时,Bravais-Pearson线性相关系数被认为是一个强有力的指标。不幸的是,在金融和生存分析中,依赖关系可能不是线性的。在这种情况下,建议使用基于等级的依赖性度量,如肯德尔的tau或斯皮尔曼的rho。在这个方向上,在长度偏倚抽样下,生存时间和协变量之间的依赖程度的测量在文献中似乎没有得到太多的关注。在本文中,我们的目标是基于信息增益的概念,使用参数copula提供依赖性度量的替代指标。特别地,提出了肯特[18]依赖度量扩展到长度偏倚的生存数据。通过仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dependence measure for length-biased survival data using copulas
Abstract The linear correlation coefficient of Bravais-Pearson is considered a powerful indicator when the dependency relationship is linear and the error variate is normally distributed. Unfortunately in finance and in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based measures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-biased sampling, measures of the degree of dependence between the survival time and the covariates appear to have not received much intention in the literature. Our goal in this paper, is to provide an alternative indicator of dependence measure, based on the concept of information gain, using the parametric copulas. In particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed. The performance of the proposed method is demonstrated through simulations studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信