18O/16O同位素分析法测定葡萄汁中外源水分

Q3 Agricultural and Biological Sciences
Mirella Mallmann Kercher, S. Leonardelli, Gilberto João Cargnel, R. Vanderlinde
{"title":"18O/16O同位素分析法测定葡萄汁中外源水分","authors":"Mirella Mallmann Kercher, S. Leonardelli, Gilberto João Cargnel, R. Vanderlinde","doi":"10.1590/1981-6723.17222","DOIUrl":null,"url":null,"abstract":"Abstract The consumption of grape juice has been growing significantly, so its quality is becoming an issue of great importance, both for the consumer and for the industry. However, identifying adulteration in juice is a great challenge and requires a reliable analytical process. The isotope ratio (18O/16O) is an important tool to determine the addition of exogenous water in beverages, however, there is no official method for juice in Brazil. This study aimed to develop and validate a method for detecting exogenous water in grape juice through isotopic analysis of 18O/16O. The development and validation of the analytical method were performed using Isotope Ratio Mass Spectrometry (IRMS). The effect of temperature and evaporation of δ18O in experimental juices was evaluated, and reference values were found for juices based on the δ 18O of musts. The influence of the juice industrial production process on 18O values was verified, and commercial juices were evaluated in relation to the values of reference regarding the addition of water. The temperature and evaporation parameters did not influence the results of the 18O of the juice, as they presented differences lower than the method uncertainty. The heat exchanger system did not influence the proposed method. The reference values for juice can come from the musts, without affecting the interpretation of the final results. Of the thirty real juices analyzed, nine had exogenous water, three proved to be reconstituted juices and eighteen were considered to have no exogenous water. The method proposed and validated in this study presented values for the limit of detection (LOD) of 0.24‰, the limit of quantification (LOQ) of 0.97‰ and measurement uncertainty of 0.71‰, proving to be effective for the detection of exogenous water in grape juice, through of the analysis of the isotopic ratio of 18O/16O by IRMS.","PeriodicalId":9112,"journal":{"name":"Brazilian Journal of Food Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of exogenous water in grape juice through the isotopic analysis of 18O/16O\",\"authors\":\"Mirella Mallmann Kercher, S. Leonardelli, Gilberto João Cargnel, R. Vanderlinde\",\"doi\":\"10.1590/1981-6723.17222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The consumption of grape juice has been growing significantly, so its quality is becoming an issue of great importance, both for the consumer and for the industry. However, identifying adulteration in juice is a great challenge and requires a reliable analytical process. The isotope ratio (18O/16O) is an important tool to determine the addition of exogenous water in beverages, however, there is no official method for juice in Brazil. This study aimed to develop and validate a method for detecting exogenous water in grape juice through isotopic analysis of 18O/16O. The development and validation of the analytical method were performed using Isotope Ratio Mass Spectrometry (IRMS). The effect of temperature and evaporation of δ18O in experimental juices was evaluated, and reference values were found for juices based on the δ 18O of musts. The influence of the juice industrial production process on 18O values was verified, and commercial juices were evaluated in relation to the values of reference regarding the addition of water. The temperature and evaporation parameters did not influence the results of the 18O of the juice, as they presented differences lower than the method uncertainty. The heat exchanger system did not influence the proposed method. The reference values for juice can come from the musts, without affecting the interpretation of the final results. Of the thirty real juices analyzed, nine had exogenous water, three proved to be reconstituted juices and eighteen were considered to have no exogenous water. The method proposed and validated in this study presented values for the limit of detection (LOD) of 0.24‰, the limit of quantification (LOQ) of 0.97‰ and measurement uncertainty of 0.71‰, proving to be effective for the detection of exogenous water in grape juice, through of the analysis of the isotopic ratio of 18O/16O by IRMS.\",\"PeriodicalId\":9112,\"journal\":{\"name\":\"Brazilian Journal of Food Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Food Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1981-6723.17222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1981-6723.17222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要葡萄汁的消费量一直在显著增长,因此葡萄汁的质量对消费者和行业来说都是一个非常重要的问题。然而,识别果汁中的掺假是一个巨大的挑战,需要一个可靠的分析过程。同位素比率(18O/16O)是确定饮料中外源水添加的重要工具,然而,巴西没有官方的果汁方法。本研究旨在建立并验证一种通过18O/16O同位素分析来检测葡萄汁中外源水分的方法。采用同位素比质谱(IRMS)对分析方法进行了开发和验证。评价了温度和蒸发对实验果汁δ18O的影响,并以must的δ18O为基准得出了果汁的参考值。验证了果汁工业生产过程对18O值的影响,并评估了商业果汁在添加水方面的参考值。温度和蒸发参数的差异小于方法不确定度,对果汁18O的测定结果没有影响。换热器系统对所提出的方法没有影响。果汁的参考值可以来自must,而不影响对最终结果的解释。在分析的30种真实果汁中,9种含有外源水,3种被证明是重组果汁,18种被认为没有外源水。本研究提出并验证的方法检出限为0.24‰,定量限为0.97‰,测量不确定度为0.71‰,通过IRMS对18O/16O同位素比值的分析,证明该方法对葡萄汁中外源水的检测是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of exogenous water in grape juice through the isotopic analysis of 18O/16O
Abstract The consumption of grape juice has been growing significantly, so its quality is becoming an issue of great importance, both for the consumer and for the industry. However, identifying adulteration in juice is a great challenge and requires a reliable analytical process. The isotope ratio (18O/16O) is an important tool to determine the addition of exogenous water in beverages, however, there is no official method for juice in Brazil. This study aimed to develop and validate a method for detecting exogenous water in grape juice through isotopic analysis of 18O/16O. The development and validation of the analytical method were performed using Isotope Ratio Mass Spectrometry (IRMS). The effect of temperature and evaporation of δ18O in experimental juices was evaluated, and reference values were found for juices based on the δ 18O of musts. The influence of the juice industrial production process on 18O values was verified, and commercial juices were evaluated in relation to the values of reference regarding the addition of water. The temperature and evaporation parameters did not influence the results of the 18O of the juice, as they presented differences lower than the method uncertainty. The heat exchanger system did not influence the proposed method. The reference values for juice can come from the musts, without affecting the interpretation of the final results. Of the thirty real juices analyzed, nine had exogenous water, three proved to be reconstituted juices and eighteen were considered to have no exogenous water. The method proposed and validated in this study presented values for the limit of detection (LOD) of 0.24‰, the limit of quantification (LOQ) of 0.97‰ and measurement uncertainty of 0.71‰, proving to be effective for the detection of exogenous water in grape juice, through of the analysis of the isotopic ratio of 18O/16O by IRMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Food Technology
Brazilian Journal of Food Technology Agricultural and Biological Sciences-Food Science
CiteScore
2.20
自引率
0.00%
发文量
32
审稿时长
35 weeks
期刊介绍: The Brazilian Journal of Food Technology (BJFT) is an electronic rolling pass publication with free access, whose purpose is to publish unpublished articles based on original research results and technological information that significantly contribute to the dissemination of new knowledge related to production and evaluation of food in the areas of science, technology, food engineering and nutrition (non-clinical). Manuscripts of national or international scope are accepted, presenting new concepts or experimental approaches that are not only repositories of scientific data. The Journal publishes original articles, review articles, scientific notes, case reports, and short communication in Portuguese and English. The submission of a manuscript presupposes that the same paper is not under analysis for publication in any other divulging vehicle. Articles specifically contemplating analytical methodologies will be accepted as long as they are innovative or provide significant improvement to existing methods. It is at the discretion of the Editors, depending on the subject relevance, the acceptance of works with test results of industrialized products without the information necessary to manufacture them. Papers aimed essentially at commercial propaganda will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信