分级弱吸收初级理想

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Bataineh, R. Abu-Dawwas
{"title":"分级弱吸收初级理想","authors":"M. Bataineh, R. Abu-Dawwas","doi":"10.1515/dema-2022-0214","DOIUrl":null,"url":null,"abstract":"Abstract Let G G be a group and R R be a G G -graded commutative ring with nonzero unity 1. In this article, we introduce the concept of graded weakly 1-absorbing primary ideals which is a generalization of graded 1-absorbing primary ideal. A proper graded ideal P P of R R is said to be a graded weakly 1-absorbing primary ideal of R R if whenever nonunit elements x , y , z ∈ h ( R ) x,y,z\\in h\\left(R) such that 0 ≠ x y z ∈ P 0\\ne xyz\\in P , then x y ∈ P xy\\in P or z n ∈ P {z}^{n}\\in P , for some n ∈ N n\\in {\\mathbb{N}} . Several properties of graded weakly 1-absorbing primary ideals are investigated.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graded weakly 1-absorbing primary ideals\",\"authors\":\"M. Bataineh, R. Abu-Dawwas\",\"doi\":\"10.1515/dema-2022-0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G G be a group and R R be a G G -graded commutative ring with nonzero unity 1. In this article, we introduce the concept of graded weakly 1-absorbing primary ideals which is a generalization of graded 1-absorbing primary ideal. A proper graded ideal P P of R R is said to be a graded weakly 1-absorbing primary ideal of R R if whenever nonunit elements x , y , z ∈ h ( R ) x,y,z\\\\in h\\\\left(R) such that 0 ≠ x y z ∈ P 0\\\\ne xyz\\\\in P , then x y ∈ P xy\\\\in P or z n ∈ P {z}^{n}\\\\in P , for some n ∈ N n\\\\in {\\\\mathbb{N}} . Several properties of graded weakly 1-absorbing primary ideals are investigated.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要设G G是一个群,R R是一个单位为非零的G G梯度交换环。本文引入了分阶弱1吸收初级理想的概念,它是分阶弱1吸收初级理想的推广。如果当非单位元素x,y,z∈h (R) x,y,z\ \在h\左(R)中使得0≠xyz∈P 0\ne xyz\在P中,则xy∈P y\ \在P中或z n∈P {z}^{n}\在P中,对于某些n∈n n\在{\mathbb{n}},则R R的固有梯度理想P P是R R的梯度弱吸收初等理想。研究了梯度弱吸收初级理想的几个性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graded weakly 1-absorbing primary ideals
Abstract Let G G be a group and R R be a G G -graded commutative ring with nonzero unity 1. In this article, we introduce the concept of graded weakly 1-absorbing primary ideals which is a generalization of graded 1-absorbing primary ideal. A proper graded ideal P P of R R is said to be a graded weakly 1-absorbing primary ideal of R R if whenever nonunit elements x , y , z ∈ h ( R ) x,y,z\in h\left(R) such that 0 ≠ x y z ∈ P 0\ne xyz\in P , then x y ∈ P xy\in P or z n ∈ P {z}^{n}\in P , for some n ∈ N n\in {\mathbb{N}} . Several properties of graded weakly 1-absorbing primary ideals are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信