一类求解拟单调变分不等式的强收敛次梯度外延方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
H. Rehman, P. Kumam, Murat Ozdemir, I. Yildirim, W. Kumam
{"title":"一类求解拟单调变分不等式的强收敛次梯度外延方法","authors":"H. Rehman, P. Kumam, Murat Ozdemir, I. Yildirim, W. Kumam","doi":"10.1515/dema-2022-0202","DOIUrl":null,"url":null,"abstract":"Abstract The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities\",\"authors\":\"H. Rehman, P. Kumam, Murat Ozdemir, I. Yildirim, W. Kumam\",\"doi\":\"10.1515/dema-2022-0202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文的主要目的是利用拟单调算子研究无穷维实数Hilbert空间中变分不等式的近似数值解。在本研究中,由于采用粘性型迭代格式,拟单调变分不等式的迭代求解序列强收敛于一个解。在此基础上,提出了一种利用惯性机制迭代获得强收敛性的新方法,而不需要混合版本。所建议的迭代策略的根本好处是,它替代单调和非单调的步长规则基于映射(算子)信息的Lipschitz常数或另一种线搜索方法。本文还提供了一个数值示例来演示每种方法的工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities
Abstract The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信