在介电层上的单轴等离子体超表面反射引起的电磁波偏振变化

Q4 Physics and Astronomy
M. Beletskii, I. Popovych
{"title":"在介电层上的单轴等离子体超表面反射引起的电磁波偏振变化","authors":"M. Beletskii, I. Popovych","doi":"10.15407/rpra27.02.153","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. The analysis of the electromagnetic waves’ polarizational transformations that may accompany their reflection from a metasurface is of considerable scientific and practical interest from the point of possibilities for improving characteristics of nanoelectronic and optical devices, and creating novel types of these. This work has been aimed at finding the conditions for efficient conversion of a p-polarized electromagnetic wave incident upon a uniaxial plasmonic metasurface at the boundary of a dielectric layer, into a wave of s-polarization. Methods and Methodology. The effects of conversion of p-polarized electromagnetic waves incident upon a uniaxial plasmonic metasurface, into s-polarized waves were explored through numerical modeling. The approach has allowed determining the wave frequencies and thicknesses of the dielectric layer best suitable for ensuring full conversion. Results. The presence of a uniaxial plasmonic metasurface on top of a dielectric layer can provide for full conversion of an incident p-polarized electromagnetic wave into a wave of s-polarization. As has been established, the effect takes place if the plane of incidence of the p-polarized wave makes an acute angle with the principal axis of the plasmonic metasurface. Another finding is that the full conversion is possible for a variety of permittivity values of the dielectric layer. Conclusions. The uniaxial plasmonic metasurface placed on a dielectric layer is characterized by unique reflective properties. It can have a noticeable impact on polarization of the p-polarized wave’s incident upon the layer. Dielectric layers provided with uniaxial metasurfaces can be used for creating optical and nanoelectronic devices of new types.","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHANGES IN ELECTROMAGNETIC WAVE POLARIZATION RESULTING FROM ITS REFLECTION AT A UNIAXIAL PLASMONIC METASURFACE ON TOP OF A DIELECTRIC LAYER\",\"authors\":\"M. Beletskii, I. Popovych\",\"doi\":\"10.15407/rpra27.02.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subject and Purpose. The analysis of the electromagnetic waves’ polarizational transformations that may accompany their reflection from a metasurface is of considerable scientific and practical interest from the point of possibilities for improving characteristics of nanoelectronic and optical devices, and creating novel types of these. This work has been aimed at finding the conditions for efficient conversion of a p-polarized electromagnetic wave incident upon a uniaxial plasmonic metasurface at the boundary of a dielectric layer, into a wave of s-polarization. Methods and Methodology. The effects of conversion of p-polarized electromagnetic waves incident upon a uniaxial plasmonic metasurface, into s-polarized waves were explored through numerical modeling. The approach has allowed determining the wave frequencies and thicknesses of the dielectric layer best suitable for ensuring full conversion. Results. The presence of a uniaxial plasmonic metasurface on top of a dielectric layer can provide for full conversion of an incident p-polarized electromagnetic wave into a wave of s-polarization. As has been established, the effect takes place if the plane of incidence of the p-polarized wave makes an acute angle with the principal axis of the plasmonic metasurface. Another finding is that the full conversion is possible for a variety of permittivity values of the dielectric layer. Conclusions. The uniaxial plasmonic metasurface placed on a dielectric layer is characterized by unique reflective properties. It can have a noticeable impact on polarization of the p-polarized wave’s incident upon the layer. Dielectric layers provided with uniaxial metasurfaces can be used for creating optical and nanoelectronic devices of new types.\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra27.02.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra27.02.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

主题和目的。从改善纳米电子和光学器件的特性以及创造新型器件的可能性的角度来看,分析电磁波的偏振变换可能伴随它们从超表面反射而来,具有相当大的科学和实际意义。这项工作的目的是找到将入射到介电层边界的单轴等离子体超表面上的p极化电磁波有效转换为s极化波的条件。方法和方法论。通过数值模拟研究了入射到单轴等离子体超表面的p极化电磁波转换为s极化波的影响。该方法可以确定最适合确保完全转换的介电层的波频率和厚度。结果。在介电层上存在单轴等离子体超表面可以使入射的p极化电磁波完全转换为s极化波。正如已经确定的那样,如果p极化波的入射面与等离子体超表面的主轴成锐角,则会发生这种效应。另一个发现是,对于介电层的各种介电常数值,完全转换是可能的。结论。放置在介质层上的单轴等离子体超表面具有独特的反射特性。它可以对p极化波入射到层上的偏振有明显的影响。具有单轴超表面的介电层可用于制造新型光学和纳米电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHANGES IN ELECTROMAGNETIC WAVE POLARIZATION RESULTING FROM ITS REFLECTION AT A UNIAXIAL PLASMONIC METASURFACE ON TOP OF A DIELECTRIC LAYER
Subject and Purpose. The analysis of the electromagnetic waves’ polarizational transformations that may accompany their reflection from a metasurface is of considerable scientific and practical interest from the point of possibilities for improving characteristics of nanoelectronic and optical devices, and creating novel types of these. This work has been aimed at finding the conditions for efficient conversion of a p-polarized electromagnetic wave incident upon a uniaxial plasmonic metasurface at the boundary of a dielectric layer, into a wave of s-polarization. Methods and Methodology. The effects of conversion of p-polarized electromagnetic waves incident upon a uniaxial plasmonic metasurface, into s-polarized waves were explored through numerical modeling. The approach has allowed determining the wave frequencies and thicknesses of the dielectric layer best suitable for ensuring full conversion. Results. The presence of a uniaxial plasmonic metasurface on top of a dielectric layer can provide for full conversion of an incident p-polarized electromagnetic wave into a wave of s-polarization. As has been established, the effect takes place if the plane of incidence of the p-polarized wave makes an acute angle with the principal axis of the plasmonic metasurface. Another finding is that the full conversion is possible for a variety of permittivity values of the dielectric layer. Conclusions. The uniaxial plasmonic metasurface placed on a dielectric layer is characterized by unique reflective properties. It can have a noticeable impact on polarization of the p-polarized wave’s incident upon the layer. Dielectric layers provided with uniaxial metasurfaces can be used for creating optical and nanoelectronic devices of new types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信