gps信号在低海拔角穿过湍流大气时随气象因素的振幅波动研究

Усикова Нан України
{"title":"gps信号在低海拔角穿过湍流大气时随气象因素的振幅波动研究","authors":"Усикова Нан України","doi":"10.15407/REJ2021.01.020","DOIUrl":null,"url":null,"abstract":"Subject and Purpose. The paper investigates tropospherically caused fluctuations of signals from the GPS navigation system while the satellite is beyond the radio horizon. The intensity of GPS signal fluctuations under the influence of meteorological factors is studied, too. The purpose of the work is to determine relationship between the intensity of GPS signal fluctuations and the meteorological conditions when satellite elevation angles are small. Methods and Methodology. The methodology of the work is based on the search for the intensity of amplitude fluctuations of GPS satellite’s signals depending on the meteorological situation. The measurement approach is registration of the GPS satellite’s signal level just before the satellite crosses the horizon. The data processing after a series of experimental studies is based on the extraction of tropospheric fluctuations from the complete GPS signal by the moving average method. Results. Experimental studies of the turbulent component of signals from GPS satellites at low elevation angles have been carried out. It has been revealed that a conventional elevation boundary below which the tropospheric influence is predominant can be established due to the synchronism property which the orbits of the GPS satellites hold. It has been shown that variations in the mean square deviation (MSD) of GPS signal fluctuations caused by the troposphere and extracted from the complete signal are consistent with meteorological parameter changes. Conclusion. Analysis has been carried out to show that a meteorological dependence of the MSD statistics of GPS signal tropospheric fluctuations exists. The intensity of fluctuations rises with the convective activity in the troposphere. The conducted experiments suggest that periods of increased turbulence in the atmosphere can be detected with the use of GPS signals. For this purpose, the optical methods will not do.","PeriodicalId":52841,"journal":{"name":"Radiofizika i elektronika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of gps signal amplitude fluctuations depending on meteorological factors when passing through a turbulent atmosphere at low elevation angles over the land\",\"authors\":\"Усикова Нан України\",\"doi\":\"10.15407/REJ2021.01.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subject and Purpose. The paper investigates tropospherically caused fluctuations of signals from the GPS navigation system while the satellite is beyond the radio horizon. The intensity of GPS signal fluctuations under the influence of meteorological factors is studied, too. The purpose of the work is to determine relationship between the intensity of GPS signal fluctuations and the meteorological conditions when satellite elevation angles are small. Methods and Methodology. The methodology of the work is based on the search for the intensity of amplitude fluctuations of GPS satellite’s signals depending on the meteorological situation. The measurement approach is registration of the GPS satellite’s signal level just before the satellite crosses the horizon. The data processing after a series of experimental studies is based on the extraction of tropospheric fluctuations from the complete GPS signal by the moving average method. Results. Experimental studies of the turbulent component of signals from GPS satellites at low elevation angles have been carried out. It has been revealed that a conventional elevation boundary below which the tropospheric influence is predominant can be established due to the synchronism property which the orbits of the GPS satellites hold. It has been shown that variations in the mean square deviation (MSD) of GPS signal fluctuations caused by the troposphere and extracted from the complete signal are consistent with meteorological parameter changes. Conclusion. Analysis has been carried out to show that a meteorological dependence of the MSD statistics of GPS signal tropospheric fluctuations exists. The intensity of fluctuations rises with the convective activity in the troposphere. The conducted experiments suggest that periods of increased turbulence in the atmosphere can be detected with the use of GPS signals. For this purpose, the optical methods will not do.\",\"PeriodicalId\":52841,\"journal\":{\"name\":\"Radiofizika i elektronika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiofizika i elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/REJ2021.01.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiofizika i elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/REJ2021.01.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主题和目的。本文研究了GPS导航系统在卫星处于无线电视界以外时,对流层引起的信号波动。研究了气象因素对GPS信号波动强度的影响。工作的目的是确定卫星仰角较小时GPS信号波动强度与气象条件之间的关系。方法和方法论。这项工作的方法是根据气象情况寻找GPS卫星信号振幅波动的强度。测量方法是在卫星穿过地平线之前对GPS卫星的信号电平进行配准。经过一系列实验研究后的数据处理是基于移动平均法从完整的GPS信号中提取对流层波动。结果。本文对GPS卫星低仰角信号的湍流分量进行了实验研究。研究表明,由于GPS卫星轨道的同步性,可以建立一个对流层影响占主导地位的常规高度边界。结果表明,对流层引起的GPS信号波动和从完整信号中提取的GPS信号均方差(MSD)变化与气象参数的变化是一致的。结论。已进行的分析表明,GPS信号对流层波动的MSD统计存在气象依赖性。波动强度随对流层对流活动的增加而增加。所进行的实验表明,使用GPS信号可以探测到大气中湍流增加的时期。为此目的,光学方法是不行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of gps signal amplitude fluctuations depending on meteorological factors when passing through a turbulent atmosphere at low elevation angles over the land
Subject and Purpose. The paper investigates tropospherically caused fluctuations of signals from the GPS navigation system while the satellite is beyond the radio horizon. The intensity of GPS signal fluctuations under the influence of meteorological factors is studied, too. The purpose of the work is to determine relationship between the intensity of GPS signal fluctuations and the meteorological conditions when satellite elevation angles are small. Methods and Methodology. The methodology of the work is based on the search for the intensity of amplitude fluctuations of GPS satellite’s signals depending on the meteorological situation. The measurement approach is registration of the GPS satellite’s signal level just before the satellite crosses the horizon. The data processing after a series of experimental studies is based on the extraction of tropospheric fluctuations from the complete GPS signal by the moving average method. Results. Experimental studies of the turbulent component of signals from GPS satellites at low elevation angles have been carried out. It has been revealed that a conventional elevation boundary below which the tropospheric influence is predominant can be established due to the synchronism property which the orbits of the GPS satellites hold. It has been shown that variations in the mean square deviation (MSD) of GPS signal fluctuations caused by the troposphere and extracted from the complete signal are consistent with meteorological parameter changes. Conclusion. Analysis has been carried out to show that a meteorological dependence of the MSD statistics of GPS signal tropospheric fluctuations exists. The intensity of fluctuations rises with the convective activity in the troposphere. The conducted experiments suggest that periods of increased turbulence in the atmosphere can be detected with the use of GPS signals. For this purpose, the optical methods will not do.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信