可积退化\(\varvec{\mathcal {E}}\) - 4d chen - simons理论的模型

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Joaquin Liniado, Benoît Vicedo
{"title":"可积退化\\(\\varvec{\\mathcal {E}}\\) - 4d chen - simons理论的模型","authors":"Joaquin Liniado,&nbsp;Benoît Vicedo","doi":"10.1007/s00023-023-01317-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present a general construction of integrable degenerate <span>\\(\\mathcal {E}\\)</span>-models on a 2d manifold <span>\\(\\Sigma \\)</span> using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on <span>\\(\\Sigma \\times {\\mathbb {C}}{P}^1\\)</span>. We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields <i>h</i> and <span>\\({\\mathcal {L}}\\)</span> on <span>\\(\\Sigma \\)</span> subject to a constraint and with <span>\\({\\mathcal {L}}\\)</span> depending rationally on the complex coordinate on <span>\\({\\mathbb {C}}{P}^1\\)</span>. When the meromorphic 1-form <span>\\(\\omega \\)</span> entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between <i>h</i> and <span>\\({\\mathcal {L}}\\)</span> was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate <span>\\(\\mathcal {E}\\)</span>-models. We extend the latter approach to the most general setting of an arbitrary 1-form <span>\\(\\omega \\)</span> and obtain integrable degenerate <span>\\(\\mathcal {E}\\)</span>-models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate <span>\\(\\mathcal {E}\\)</span>-models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter <span>\\(\\sigma \\)</span>-model.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"24 10","pages":"3421 - 3459"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01317-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Integrable Degenerate \\\\(\\\\varvec{\\\\mathcal {E}}\\\\)-Models from 4d Chern–Simons Theory\",\"authors\":\"Joaquin Liniado,&nbsp;Benoît Vicedo\",\"doi\":\"10.1007/s00023-023-01317-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a general construction of integrable degenerate <span>\\\\(\\\\mathcal {E}\\\\)</span>-models on a 2d manifold <span>\\\\(\\\\Sigma \\\\)</span> using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on <span>\\\\(\\\\Sigma \\\\times {\\\\mathbb {C}}{P}^1\\\\)</span>. We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields <i>h</i> and <span>\\\\({\\\\mathcal {L}}\\\\)</span> on <span>\\\\(\\\\Sigma \\\\)</span> subject to a constraint and with <span>\\\\({\\\\mathcal {L}}\\\\)</span> depending rationally on the complex coordinate on <span>\\\\({\\\\mathbb {C}}{P}^1\\\\)</span>. When the meromorphic 1-form <span>\\\\(\\\\omega \\\\)</span> entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between <i>h</i> and <span>\\\\({\\\\mathcal {L}}\\\\)</span> was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate <span>\\\\(\\\\mathcal {E}\\\\)</span>-models. We extend the latter approach to the most general setting of an arbitrary 1-form <span>\\\\(\\\\omega \\\\)</span> and obtain integrable degenerate <span>\\\\(\\\\mathcal {E}\\\\)</span>-models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate <span>\\\\(\\\\mathcal {E}\\\\)</span>-models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter <span>\\\\(\\\\sigma \\\\)</span>-model.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"24 10\",\"pages\":\"3421 - 3459\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-023-01317-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01317-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01317-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

基于\(\Sigma \times {\mathbb {C}}{P}^1\)上的4d chen - simons理论,利用Costello和Yamazaki的形式化构造了二维流形\(\Sigma \)上可积退化\(\mathcal {E}\) -模型的一般构造。我们首先对Benini等人的数学结果进行物理动机审查(common Math physics 389(3):1417 - 1443,2022)。https://doi.org/10.1007/s00220-021-04304-7),其中一个统一的二维作用是由4d的Chern-Simons理论得到的,它依赖于受约束的一对二维场h和\({\mathcal {L}}\)在\(\Sigma \)上,\({\mathcal {L}}\)合理地依赖于\({\mathbb {C}}{P}^1\)上的复坐标。当亚纯1-形式\(\omega \)进入四维作用时,要求其在无穷远处具有双极,在Lacroix和Vicedo (SIGMA 17:058, 2021)中求解了h与\({\mathcal {L}}\)之间的约束。https://doi.org/10.3842/SIGMA.2021.058)得到可积非退化\(\mathcal {E}\) -模型。我们将后一种方法推广到任意1-形式\(\omega \)的最一般设置,并得到可积退化\(\mathcal {E}\) -模型。为了说明这个过程,我们重现了两个著名的可积退化\(\mathcal {E}\) -模型的例子:主手性模型的伪对偶和bi-Yang-Baxter \(\sigma \) -模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable Degenerate \(\varvec{\mathcal {E}}\)-Models from 4d Chern–Simons Theory

We present a general construction of integrable degenerate \(\mathcal {E}\)-models on a 2d manifold \(\Sigma \) using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on \(\Sigma \times {\mathbb {C}}{P}^1\). We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and \({\mathcal {L}}\) on \(\Sigma \) subject to a constraint and with \({\mathcal {L}}\) depending rationally on the complex coordinate on \({\mathbb {C}}{P}^1\). When the meromorphic 1-form \(\omega \) entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and \({\mathcal {L}}\) was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate \(\mathcal {E}\)-models. We extend the latter approach to the most general setting of an arbitrary 1-form \(\omega \) and obtain integrable degenerate \(\mathcal {E}\)-models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate \(\mathcal {E}\)-models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter \(\sigma \)-model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信