二维硼罗芬纳米材料:新型可再生能源存储应用的最新进展

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Chuan Li , Ayesha Khan Tareen , Jianyu Long , Muhammad Iqbal , Waqas Ahmad , Muhammad Farooq Khan , Jinghua Sun , Zhang Ye , Usman Khan , Adeela Nairan , Karim Khan
{"title":"二维硼罗芬纳米材料:新型可再生能源存储应用的最新进展","authors":"Chuan Li ,&nbsp;Ayesha Khan Tareen ,&nbsp;Jianyu Long ,&nbsp;Muhammad Iqbal ,&nbsp;Waqas Ahmad ,&nbsp;Muhammad Farooq Khan ,&nbsp;Jinghua Sun ,&nbsp;Zhang Ye ,&nbsp;Usman Khan ,&nbsp;Adeela Nairan ,&nbsp;Karim Khan","doi":"10.1016/j.progsolidstchem.2023.100416","DOIUrl":null,"url":null,"abstract":"<div><p>Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a \"hollow hexagon\" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.</p><p>The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials<span> in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.</span></p><p><span>Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic </span>Young's modulus<span>, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion<span> batteries, and supercapacitors (SCs), is covered in great length at the very end.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"71 ","pages":"Article 100416"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications\",\"authors\":\"Chuan Li ,&nbsp;Ayesha Khan Tareen ,&nbsp;Jianyu Long ,&nbsp;Muhammad Iqbal ,&nbsp;Waqas Ahmad ,&nbsp;Muhammad Farooq Khan ,&nbsp;Jinghua Sun ,&nbsp;Zhang Ye ,&nbsp;Usman Khan ,&nbsp;Adeela Nairan ,&nbsp;Karim Khan\",\"doi\":\"10.1016/j.progsolidstchem.2023.100416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a \\\"hollow hexagon\\\" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.</p><p>The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials<span> in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.</span></p><p><span>Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic </span>Young's modulus<span>, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion<span> batteries, and supercapacitors (SCs), is covered in great length at the very end.</span></span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":\"71 \",\"pages\":\"Article 100416\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678623000274\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000274","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

硼罗芬由于缺陷形成能极低,与其他二维(2D)材料有明显区别,其晶体与硼(B)空位缺陷难以区分。与石墨烯等其他二维材料相比,波罗芬在其体态时不会形成层。此外,硼罗芬纳米的原子结构与石墨烯不同,它由连通的三角形组成,而不是六边形。这种原子构型在原子缺失的地方有间隙,导致了一个被称为“空心六边形”(HH)的缺陷。在硼罗芬相中,这些HHs可以以各种比例存在。硼罗芬的相混合是在二维材料中发现的“有序”缺陷的一个全新例子。大多数二维材料在不同畴或相之间的边界处存在缺陷或原子排列中断。在二维系统中,由于几乎所有的原子都在表面上,缺陷对确定材料的性质起着重要的影响。例如,与金属石墨烯中的绝缘缺陷相比,硼罗芬中沿相边界的线缺陷对材料在环境温度下的电特性没有影响。硼罗芬边缘的原子很容易沿着线断层排列,并采用相邻原子的结构,不会造成破坏。此外,线缺陷不会破坏硼罗芬的无缝结构,保持其稳定性和金属性能。实验上,四种硼罗芬相均已合成,且均为金属相。讨论了硼苯NM的一系列特性,包括其负泊松比和极各向异性的杨氏模量。在这里我们也强调了B的导电和超导性质。最后,对硼罗芬纳米在能源领域的应用进行了概述,包括金属离子电池和超级电容器(sc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications

Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications

Due to ultralow defect formation energy, borophene differs significantly from other 2D (two-dimensional) materials in that it is difficult to distinguish between its crystal and boron (B) vacancy defect. In contrast to other 2D materials like graphene, borophene does not form layers when it is in its bulk state. In addition, borophene NM's atomic structure is different from graphene's in that it consists of connected triangles rather than hexagons. This atomic configuration has gaps where atoms are missing, resulting in a flaw called a "hollow hexagon" (HH). In borophene phases, these HHs can be found in a variety of ratios. The phase intermixing of borophene is a brand-new example of an 'ordered' defect discovered in 2D materials.

The majority of 2D materials have flaws or disruptions to the atom arrangement at the boundaries between various domains or phases. Defects play a major influence in determining the properties of materials in a 2D system, because all atoms are virtually on the surface. For instance, the line defects along phase boundaries in borophene have no effect on the material's electrical characteristics at ambient temperature, in contrast to insulating flaws in metallic graphene. The atoms at the borders of borophene easily fit along line faults and adopt the configuration of their neighbors, causing no disruption. Additionally, the line flaws do not disrupt the seamless structure of borophene and maintain its stability and metallic properties.

Experimentally, all four borophene phases have been synthesized, and they are all metallic. A list of borophene NM's special characteristics, including its negative Poisson's ratio and extremely anisotropic Young's modulus, is discussed. Here we also emphasized on B's conductive and superconductive qualities. An overview of borophene NM's uses in the energy sectors, including metal ion batteries, and supercapacitors (SCs), is covered in great length at the very end.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信