Florian Seidel , Franziska Kappenberg , Susann Fayyaz , Andreas Scholtz-Illigens , Anna Cherianidou , Katharina Derksen , Patrick Nell , Rosemarie Marchan , Karolina Edlund , Marcel Leist , Agapios Sachinidis , Jörg Rahnenführer , Reinhard Kreiling , Jan G. Hengstler
{"title":"基于转录组学的对羟基苯甲酸酯体外试验的风险评估","authors":"Florian Seidel , Franziska Kappenberg , Susann Fayyaz , Andreas Scholtz-Illigens , Anna Cherianidou , Katharina Derksen , Patrick Nell , Rosemarie Marchan , Karolina Edlund , Marcel Leist , Agapios Sachinidis , Jörg Rahnenführer , Reinhard Kreiling , Jan G. Hengstler","doi":"10.1016/j.cbi.2023.110699","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Parabens have been used for decades as preservatives in food, drugs and cosmetics. The majority however, were banned in 2009 and 2014 leaving only methyl-, ethyl-, propyl-, and butyl-derivates available for subsequent use. Methyl- and </span>propylparaben have been extensively tested in vivo, with no resulting evidence for developmental and </span>reproductive toxicity<span> (DART). In contrast, ethylparaben has not yet been tested for DART in animal experiments, and it is currently debated if additional animal studies are warranted. In order to perform a comparison of the four currently approved parabens, we used a previously established in vitro test based on human induced pluripotent stem cells (iPSC) that are exposed to test substances during their differentiation to neuroectodermal cells. EC</span></span><sub>50</sub><span><span> values for cytotoxicity were 906 μM, 698 μM, 216 μM and 63 μM for methyl-, ethyl-, propyl- and butylparaben<span>, respectively, demonstrating that cytotoxicity increases with increasing alkyl chain length. Genome-wide analysis demonstrated that FDR-adjusted significant gene expression changes occurred only at cytotoxic or close to cytotoxic concentrations, for example 1720 differentially expressed genes (DEG) at 1000 μM ethylparaben, 1 DEG at 316 μM, and no DEG at 100 μM or lower concentrations. The highest concentration of ethylparaben that did not induce any cytotoxicity nor DEG was 1670-fold above the highest concentration reported in biomonitoring studies (60 nM ethylparaben in cord blood). In conclusion, cytotoxicity and gene expression alterations of ethylparaben occurred at concentrations of approximately three orders of magnitude above human blood concentrations; moreover, the substance fitted well into a scenario where toxicity increases with the alkyl chain length, and gene expression changes only occur at cytotoxic or close to cytotoxic concentrations. Therefore, no evidence was obtained suggesting that in vivo DART with ethylparaben would lead to different results as the methyl- or </span></span>propyl derivates.</span></p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"384 ","pages":"Article 110699"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk assessment of parabens in a transcriptomics-based in vitro test\",\"authors\":\"Florian Seidel , Franziska Kappenberg , Susann Fayyaz , Andreas Scholtz-Illigens , Anna Cherianidou , Katharina Derksen , Patrick Nell , Rosemarie Marchan , Karolina Edlund , Marcel Leist , Agapios Sachinidis , Jörg Rahnenführer , Reinhard Kreiling , Jan G. Hengstler\",\"doi\":\"10.1016/j.cbi.2023.110699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Parabens have been used for decades as preservatives in food, drugs and cosmetics. The majority however, were banned in 2009 and 2014 leaving only methyl-, ethyl-, propyl-, and butyl-derivates available for subsequent use. Methyl- and </span>propylparaben have been extensively tested in vivo, with no resulting evidence for developmental and </span>reproductive toxicity<span> (DART). In contrast, ethylparaben has not yet been tested for DART in animal experiments, and it is currently debated if additional animal studies are warranted. In order to perform a comparison of the four currently approved parabens, we used a previously established in vitro test based on human induced pluripotent stem cells (iPSC) that are exposed to test substances during their differentiation to neuroectodermal cells. EC</span></span><sub>50</sub><span><span> values for cytotoxicity were 906 μM, 698 μM, 216 μM and 63 μM for methyl-, ethyl-, propyl- and butylparaben<span>, respectively, demonstrating that cytotoxicity increases with increasing alkyl chain length. Genome-wide analysis demonstrated that FDR-adjusted significant gene expression changes occurred only at cytotoxic or close to cytotoxic concentrations, for example 1720 differentially expressed genes (DEG) at 1000 μM ethylparaben, 1 DEG at 316 μM, and no DEG at 100 μM or lower concentrations. The highest concentration of ethylparaben that did not induce any cytotoxicity nor DEG was 1670-fold above the highest concentration reported in biomonitoring studies (60 nM ethylparaben in cord blood). In conclusion, cytotoxicity and gene expression alterations of ethylparaben occurred at concentrations of approximately three orders of magnitude above human blood concentrations; moreover, the substance fitted well into a scenario where toxicity increases with the alkyl chain length, and gene expression changes only occur at cytotoxic or close to cytotoxic concentrations. Therefore, no evidence was obtained suggesting that in vivo DART with ethylparaben would lead to different results as the methyl- or </span></span>propyl derivates.</span></p></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"384 \",\"pages\":\"Article 110699\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279723003666\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279723003666","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Risk assessment of parabens in a transcriptomics-based in vitro test
Parabens have been used for decades as preservatives in food, drugs and cosmetics. The majority however, were banned in 2009 and 2014 leaving only methyl-, ethyl-, propyl-, and butyl-derivates available for subsequent use. Methyl- and propylparaben have been extensively tested in vivo, with no resulting evidence for developmental and reproductive toxicity (DART). In contrast, ethylparaben has not yet been tested for DART in animal experiments, and it is currently debated if additional animal studies are warranted. In order to perform a comparison of the four currently approved parabens, we used a previously established in vitro test based on human induced pluripotent stem cells (iPSC) that are exposed to test substances during their differentiation to neuroectodermal cells. EC50 values for cytotoxicity were 906 μM, 698 μM, 216 μM and 63 μM for methyl-, ethyl-, propyl- and butylparaben, respectively, demonstrating that cytotoxicity increases with increasing alkyl chain length. Genome-wide analysis demonstrated that FDR-adjusted significant gene expression changes occurred only at cytotoxic or close to cytotoxic concentrations, for example 1720 differentially expressed genes (DEG) at 1000 μM ethylparaben, 1 DEG at 316 μM, and no DEG at 100 μM or lower concentrations. The highest concentration of ethylparaben that did not induce any cytotoxicity nor DEG was 1670-fold above the highest concentration reported in biomonitoring studies (60 nM ethylparaben in cord blood). In conclusion, cytotoxicity and gene expression alterations of ethylparaben occurred at concentrations of approximately three orders of magnitude above human blood concentrations; moreover, the substance fitted well into a scenario where toxicity increases with the alkyl chain length, and gene expression changes only occur at cytotoxic or close to cytotoxic concentrations. Therefore, no evidence was obtained suggesting that in vivo DART with ethylparaben would lead to different results as the methyl- or propyl derivates.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.