基于神经网络预测的铁路系统振动分析

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ş. Yıldırım, Caglar Sevim, M. Kalkat
{"title":"基于神经网络预测的铁路系统振动分析","authors":"Ş. Yıldırım, Caglar Sevim, M. Kalkat","doi":"10.14311/nnw.2023.33.009","DOIUrl":null,"url":null,"abstract":"Due to travelling on railway systems; there are many gaps and problems in cross areas. Therefore; it is necessary and very important to establish intelligent crossing systems in such areas. On the other hand, it is not possible for trains to stop or brake immediately against an obstacle due to their high speed and inertia. For this reason, it is necessary to work on the safety/warning of the other main factors and necessities (pedestrians and vehicles) in level crossings. This experimental investigation is carried out by using an experimental real-time train and crossing systems. The main vibration parameters are analysed by using neural networks. First, the dynamics of the train-rail system related to level crossings are examined, and the vibrations created by the train on rails are measured at different speeds. Then three types of proposed neural networks predictors, Levenberg-Marquardt backpropagation (LMBP), scaled conjugate gradient backpropagation (SCGB) and BFGS quasi-Newton backpropagation (BFGS) are used to predict the vibration of the train-rail system. From the results, it is seen that the proposed LMBP is more suitable for analysing and predicting the vibration of the train-rail system. It is clear that the speeds of the trains approaching the level crossing can be estimated from the vibration of the trains on the rails.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration analyses of railway systems using proposed neural predictors\",\"authors\":\"Ş. Yıldırım, Caglar Sevim, M. Kalkat\",\"doi\":\"10.14311/nnw.2023.33.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to travelling on railway systems; there are many gaps and problems in cross areas. Therefore; it is necessary and very important to establish intelligent crossing systems in such areas. On the other hand, it is not possible for trains to stop or brake immediately against an obstacle due to their high speed and inertia. For this reason, it is necessary to work on the safety/warning of the other main factors and necessities (pedestrians and vehicles) in level crossings. This experimental investigation is carried out by using an experimental real-time train and crossing systems. The main vibration parameters are analysed by using neural networks. First, the dynamics of the train-rail system related to level crossings are examined, and the vibrations created by the train on rails are measured at different speeds. Then three types of proposed neural networks predictors, Levenberg-Marquardt backpropagation (LMBP), scaled conjugate gradient backpropagation (SCGB) and BFGS quasi-Newton backpropagation (BFGS) are used to predict the vibration of the train-rail system. From the results, it is seen that the proposed LMBP is more suitable for analysing and predicting the vibration of the train-rail system. It is clear that the speeds of the trains approaching the level crossing can be estimated from the vibration of the trains on the rails.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2023.33.009\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于乘坐铁路系统;跨领域存在许多差距和问题。因此;在这些地区建立智能交叉系统是非常必要和重要的。另一方面,由于火车的高速和惯性,它不可能在遇到障碍物时立即停车或刹车。因此,有必要对平交道口的其他主要因素和必需品(行人和车辆)的安全/警告进行研究。本实验研究是利用一个实验实时列车和交叉系统进行的。利用神经网络对主要振动参数进行了分析。首先,研究了与平交道口相关的火车-轨道系统的动力学,并测量了火车在不同速度下在轨道上产生的振动。然后利用Levenberg-Marquardt反向传播(LMBP)、缩放共轭梯度反向传播(SCGB)和BFGS准牛顿反向传播(BFGS)三种神经网络预测方法对列车-轨道系统的振动进行预测。结果表明,所提出的LMBP更适合于列车-轨道系统的振动分析和预测。很明显,接近平交道口的列车的速度可以通过列车在轨道上的振动来估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration analyses of railway systems using proposed neural predictors
Due to travelling on railway systems; there are many gaps and problems in cross areas. Therefore; it is necessary and very important to establish intelligent crossing systems in such areas. On the other hand, it is not possible for trains to stop or brake immediately against an obstacle due to their high speed and inertia. For this reason, it is necessary to work on the safety/warning of the other main factors and necessities (pedestrians and vehicles) in level crossings. This experimental investigation is carried out by using an experimental real-time train and crossing systems. The main vibration parameters are analysed by using neural networks. First, the dynamics of the train-rail system related to level crossings are examined, and the vibrations created by the train on rails are measured at different speeds. Then three types of proposed neural networks predictors, Levenberg-Marquardt backpropagation (LMBP), scaled conjugate gradient backpropagation (SCGB) and BFGS quasi-Newton backpropagation (BFGS) are used to predict the vibration of the train-rail system. From the results, it is seen that the proposed LMBP is more suitable for analysing and predicting the vibration of the train-rail system. It is clear that the speeds of the trains approaching the level crossing can be estimated from the vibration of the trains on the rails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信