基于互信息和多层次关注的远程监督关系提取

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuxin Ye, Song Jiang, Shi Wang, Huiying Li
{"title":"基于互信息和多层次关注的远程监督关系提取","authors":"Yuxin Ye, Song Jiang, Shi Wang, Huiying Li","doi":"10.14311/nnw.2022.32.010","DOIUrl":null,"url":null,"abstract":"Distant supervision for relation extraction, an effective method to reduce labor costs, has been widely used to search for novel relational facts from text. However, distant supervision always suffers from incorrect labelling problems. Meanwhile, existing methods for noise reduction oftentimes ignore the commonalities in the instances. To alleviate this issue, we propose a distant supervision relation extraction model based on mutual information and multi-level attention. In our proposed method, we calculate mutual information based on the attention mechanism. Mutual information are used to build attention at both word and sentence levels, which is expected to dynamically reduce the influence of noisy instances. Extensive experiments using a benchmark dataset have validated the effectiveness of our proposed method.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distant supervision relation extraction based on mutual information and multi-level attention\",\"authors\":\"Yuxin Ye, Song Jiang, Shi Wang, Huiying Li\",\"doi\":\"10.14311/nnw.2022.32.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distant supervision for relation extraction, an effective method to reduce labor costs, has been widely used to search for novel relational facts from text. However, distant supervision always suffers from incorrect labelling problems. Meanwhile, existing methods for noise reduction oftentimes ignore the commonalities in the instances. To alleviate this issue, we propose a distant supervision relation extraction model based on mutual information and multi-level attention. In our proposed method, we calculate mutual information based on the attention mechanism. Mutual information are used to build attention at both word and sentence levels, which is expected to dynamically reduce the influence of noisy instances. Extensive experiments using a benchmark dataset have validated the effectiveness of our proposed method.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2022.32.010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

远程监督关系抽取作为一种有效的降低人工成本的方法,已被广泛应用于从文本中寻找新的关系事实。然而,远程监管总是存在标签不正确的问题。同时,现有的降噪方法往往忽略了实例中的共性。为了解决这一问题,我们提出了一种基于互信息和多层次关注的远程监督关系提取模型。在我们提出的方法中,我们基于注意机制计算互信息。互信息用于在单词和句子级别建立注意力,这有望动态地减少噪声实例的影响。使用基准数据集的大量实验验证了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distant supervision relation extraction based on mutual information and multi-level attention
Distant supervision for relation extraction, an effective method to reduce labor costs, has been widely used to search for novel relational facts from text. However, distant supervision always suffers from incorrect labelling problems. Meanwhile, existing methods for noise reduction oftentimes ignore the commonalities in the instances. To alleviate this issue, we propose a distant supervision relation extraction model based on mutual information and multi-level attention. In our proposed method, we calculate mutual information based on the attention mechanism. Mutual information are used to build attention at both word and sentence levels, which is expected to dynamically reduce the influence of noisy instances. Extensive experiments using a benchmark dataset have validated the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信