Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec
{"title":"基于神经网络的交通事故风险分类","authors":"Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec","doi":"10.14311/nnw.2021.31.019","DOIUrl":null,"url":null,"abstract":"The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Traffic accident risk classification using neural networks\",\"authors\":\"Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec\",\"doi\":\"10.14311/nnw.2021.31.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2021.31.019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Traffic accident risk classification using neural networks
The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.