基于神经网络的交通事故风险分类

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec
{"title":"基于神经网络的交通事故风险分类","authors":"Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec","doi":"10.14311/nnw.2021.31.019","DOIUrl":null,"url":null,"abstract":"The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Traffic accident risk classification using neural networks\",\"authors\":\"Zuzana Purkrábková, J. Ruzicka, Z. Belinová, Vojtěch Korec\",\"doi\":\"10.14311/nnw.2021.31.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2021.31.019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2021.31.019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

本文对当前城市交通事故风险分类问题进行了研究。考虑到捷克共和国交通的增加,可以预期未来交通超载的风险更大。如果城市中存在交通过剩,其目的是提出一个有意义的交通管理解决方案,以尽量减少社会损失。主要需求是早期识别和分类交通过剩的原因,找到合适的替代解决方案,快速应用该解决方案,以及快速恢复拥堵区域的运营能力。交通预测是早期识别交通过剩的工具之一。本文介绍了基于自编程神经网络的事故风险输出变量的分类和预测的广泛研究。研究成果随后将用于为捷克共和国选定的一个城市地区建立交通应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic accident risk classification using neural networks
The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信