{"title":"基于QRD RLS点阵算法的手部检测应用及其在Xilinx Zynq Ultrascale+上的实现","authors":"R. Likhonina, Evženie Uglickich","doi":"10.14311/nnw.2022.32.005","DOIUrl":null,"url":null,"abstract":"The present paper describes hand detection application implemented on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based on adaptive QRD RLS lattice algorithm extended with hypothesis testing. The algorithm chooses between two use-cases: (1) there is a hand in front of the device vs (2) there is no hand in front of the device. For these purposes a new structure of the identification models was designed. The model presenting use-case (1) is a regression model, which has the order sufficient to cover all incoming data. The model responsible for use-case (2) is a regression model, which has a smaller order than the model (1) and a certain time delay, covering the maximal distance where the hand can possibly appear. The offered concept was successfully verified using real ultrasound data in MATLAB optimized for parallel processing and implemented in parallel on four cores of ARM Cortex A53 processor. It was proved that computational time of the algorithm is sufficient for applications requiring real-time processing.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hand detection application based on QRD RLS lattice algorithm and its implementation on Xilinx Zynq Ultrascale+\",\"authors\":\"R. Likhonina, Evženie Uglickich\",\"doi\":\"10.14311/nnw.2022.32.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper describes hand detection application implemented on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based on adaptive QRD RLS lattice algorithm extended with hypothesis testing. The algorithm chooses between two use-cases: (1) there is a hand in front of the device vs (2) there is no hand in front of the device. For these purposes a new structure of the identification models was designed. The model presenting use-case (1) is a regression model, which has the order sufficient to cover all incoming data. The model responsible for use-case (2) is a regression model, which has a smaller order than the model (1) and a certain time delay, covering the maximal distance where the hand can possibly appear. The offered concept was successfully verified using real ultrasound data in MATLAB optimized for parallel processing and implemented in parallel on four cores of ARM Cortex A53 processor. It was proved that computational time of the algorithm is sufficient for applications requiring real-time processing.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2022.32.005\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hand detection application based on QRD RLS lattice algorithm and its implementation on Xilinx Zynq Ultrascale+
The present paper describes hand detection application implemented on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based on adaptive QRD RLS lattice algorithm extended with hypothesis testing. The algorithm chooses between two use-cases: (1) there is a hand in front of the device vs (2) there is no hand in front of the device. For these purposes a new structure of the identification models was designed. The model presenting use-case (1) is a regression model, which has the order sufficient to cover all incoming data. The model responsible for use-case (2) is a regression model, which has a smaller order than the model (1) and a certain time delay, covering the maximal distance where the hand can possibly appear. The offered concept was successfully verified using real ultrasound data in MATLAB optimized for parallel processing and implemented in parallel on four cores of ARM Cortex A53 processor. It was proved that computational time of the algorithm is sufficient for applications requiring real-time processing.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.