基于自适应多通道加权神经网络的心电信号分类

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fengjuan Qiao, Bin Li, Mengqi Gao, Jiang Li
{"title":"基于自适应多通道加权神经网络的心电信号分类","authors":"Fengjuan Qiao, Bin Li, Mengqi Gao, Jiang Li","doi":"10.14311/nnw.2022.32.004","DOIUrl":null,"url":null,"abstract":"The intelligent diagnosis of cardiovascular diseases is a topic of great interest. Many electrocardiogram (ECG) recognition technologies have emerged, but most of them have low recognition accuracy and poor clinical application. To improve the accuracy of ECG classification, this paper proposes a multi-channel neural network framework. Concretely, a multi-channel feature extractor is constructed by using four types of filters, which are weighted according to their importance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM) network structure based on attention mechanism is constructed, and the extracted features are taken as the input of the network, and the algorithm is optimized by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia database shows that the proposed algorithm obtains excellent results, with 99.20 % specificity, 99.87 % sensitivity, and 99.89 % accuracy. Therefore, the algorithm is practical and effective in the clinical diagnosis of cardiovascular diseases.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ECG signal classification based on adaptive multi-channel weighted neural network\",\"authors\":\"Fengjuan Qiao, Bin Li, Mengqi Gao, Jiang Li\",\"doi\":\"10.14311/nnw.2022.32.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intelligent diagnosis of cardiovascular diseases is a topic of great interest. Many electrocardiogram (ECG) recognition technologies have emerged, but most of them have low recognition accuracy and poor clinical application. To improve the accuracy of ECG classification, this paper proposes a multi-channel neural network framework. Concretely, a multi-channel feature extractor is constructed by using four types of filters, which are weighted according to their importance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM) network structure based on attention mechanism is constructed, and the extracted features are taken as the input of the network, and the algorithm is optimized by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia database shows that the proposed algorithm obtains excellent results, with 99.20 % specificity, 99.87 % sensitivity, and 99.89 % accuracy. Therefore, the algorithm is practical and effective in the clinical diagnosis of cardiovascular diseases.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2022.32.004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2022.32.004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

心血管疾病的智能诊断是一个备受关注的话题。虽然出现了许多心电图识别技术,但大多数识别准确率较低,临床应用较差。为了提高心电分类的准确率,本文提出了一种多通道神经网络框架。具体而言,通过使用四种类型的滤波器构建多通道特征提取器,根据其重要性对其进行加权,并通过峰度测量。构建了基于注意机制的双向长短期记忆(BLSTM)网络结构,将提取的特征作为网络的输入,并利用注意机制对算法进行优化。在MIT-BIH心律失常数据库上进行的实验表明,该算法的特异性为99.20%,灵敏度为99.87%,准确率为99.89%。因此,该算法在心血管疾病的临床诊断中具有实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG signal classification based on adaptive multi-channel weighted neural network
The intelligent diagnosis of cardiovascular diseases is a topic of great interest. Many electrocardiogram (ECG) recognition technologies have emerged, but most of them have low recognition accuracy and poor clinical application. To improve the accuracy of ECG classification, this paper proposes a multi-channel neural network framework. Concretely, a multi-channel feature extractor is constructed by using four types of filters, which are weighted according to their importance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM) network structure based on attention mechanism is constructed, and the extracted features are taken as the input of the network, and the algorithm is optimized by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia database shows that the proposed algorithm obtains excellent results, with 99.20 % specificity, 99.87 % sensitivity, and 99.89 % accuracy. Therefore, the algorithm is practical and effective in the clinical diagnosis of cardiovascular diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信