基于生物启发策略的启发式平行LDTW距离优化方法

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jin Dai, Yuhong He, Jiayao Li
{"title":"基于生物启发策略的启发式平行LDTW距离优化方法","authors":"Jin Dai, Yuhong He, Jiayao Li","doi":"10.14311/NNW.2021.31.001","DOIUrl":null,"url":null,"abstract":"Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"31 1","pages":"1-28"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approach for heuristic parallel LDTW distance optimization method with bio-inspired strategy\",\"authors\":\"Jin Dai, Yuhong He, Jiayao Li\",\"doi\":\"10.14311/NNW.2021.31.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"31 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2021.31.001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2021.31.001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach for heuristic parallel LDTW distance optimization method with bio-inspired strategy
Dynamic time warping (DTW) is a classical similarity measure for arbitrary length time series. As an effective improvement of DTW, dynamic time warping under limited warping path length (LDTW) oppresses the long-term pathological alignment problem and allows better flexibility. However, since LDTW increases path lengths, it directly leads to higher time-consuming. In this paper, a new method of similarity sequence measurement (ACO LDTW) is proposed by the parallel computing characteristics of ant colony optimization (ACO) algorithm with bio-inspired strategy and the idea of LDTW path restriction. This algorithm searches the optimal path on the restricted distance matrix by simulating the behavior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the 0− 1 matrix of grid method, and the search range of ants is limited by the warping path in LDTW. Secondly, the state transition probability function, pheromone initialization and update mechanism of ACO algorithm are adapted. On the basis of ensuring the accurate results, the convergence rate can be effectively improved. The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN classification experiment, ACO LDTW has the lowest classification error rate in 16 data sets, and it is shorter than the calculation time of LDTW. At the same time, it is applied to the field of mechanical fault diagnosis and has the ability to solve practical engineering applications. Experiments show that ACO LDTW is more effective in terms of accuracy and computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信