{"title":"用于分词的迭代扩展卷积神经网络","authors":"H. He, X. Yang, L. Wu, G. Wang","doi":"10.14311/NNW.2020.30.022","DOIUrl":null,"url":null,"abstract":"The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are not adapted to fully exploit the parallelism capability of Graphics Processing Unit (GPU), limiting their computational efficiency in both learning and inferring phases. This paper proposes a novel approach adopting Iterated Dilated Convolutional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation while retaining accuracy. Our implementation has achieved state-of-the-art result on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our approach with ID-CNNs enables 3× training time speedups with no accuracy loss, achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and corpora of this paper have been made publicly available on GitHub.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"333-346"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterated dilated convolutional neural networks for word segmentation\",\"authors\":\"H. He, X. Yang, L. Wu, G. Wang\",\"doi\":\"10.14311/NNW.2020.30.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are not adapted to fully exploit the parallelism capability of Graphics Processing Unit (GPU), limiting their computational efficiency in both learning and inferring phases. This paper proposes a novel approach adopting Iterated Dilated Convolutional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation while retaining accuracy. Our implementation has achieved state-of-the-art result on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our approach with ID-CNNs enables 3× training time speedups with no accuracy loss, achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and corpora of this paper have been made publicly available on GitHub.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"30 1\",\"pages\":\"333-346\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2020.30.022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2020.30.022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Iterated dilated convolutional neural networks for word segmentation
The latest development of neural word segmentation is governed by bi-directional Long Short-Term Memory Networks (Bi-LSTMs) that utilize Recurrent Neural Networks (RNNs) as standard sequence tagging models, resulting in expressive and accurate performance on large-scale dataset. However, RNNs are not adapted to fully exploit the parallelism capability of Graphics Processing Unit (GPU), limiting their computational efficiency in both learning and inferring phases. This paper proposes a novel approach adopting Iterated Dilated Convolutional Neural Networks (ID-CNNs) to supersede Bi-LSTMs for faster computation while retaining accuracy. Our implementation has achieved state-of-the-art result on SIGHAN Bakeoff 2005 datasets. Extensive experiments showed that our approach with ID-CNNs enables 3× training time speedups with no accuracy loss, achieving better accuracy compared to the prevailing Bi-LSTMs. Source code and corpora of this paper have been made publicly available on GitHub.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.