执行贝叶斯推理的软件包比较

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Koprivica
{"title":"执行贝叶斯推理的软件包比较","authors":"M. Koprivica","doi":"10.14311/NNW.2020.30.019","DOIUrl":null,"url":null,"abstract":"In this paper, we compare three state-of-the-art Python packages for Bayesian inference: JAGS [14], Stan [5], and PyMC3 [18]. These packages are in focus because they are the most mature, and Python is among the most utilized programming languages for teaching mathematics and statistics in colleges [13]. The experiment is based on real-world data collected for investigating the therapeutic touch nursing technique [17]. It is analyzed through a hierarchical model with prior beta distribution and binomial likelihood function. The tools are compared by execution time and sample quality.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"283-294"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of software packages for performing Bayesian inference\",\"authors\":\"M. Koprivica\",\"doi\":\"10.14311/NNW.2020.30.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare three state-of-the-art Python packages for Bayesian inference: JAGS [14], Stan [5], and PyMC3 [18]. These packages are in focus because they are the most mature, and Python is among the most utilized programming languages for teaching mathematics and statistics in colleges [13]. The experiment is based on real-world data collected for investigating the therapeutic touch nursing technique [17]. It is analyzed through a hierarchical model with prior beta distribution and binomial likelihood function. The tools are compared by execution time and sample quality.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"30 1\",\"pages\":\"283-294\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2020.30.019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2020.30.019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们比较了用于贝叶斯推断的三个最先进的Python包:JAGS[14]、Stan[5]和PyMC3[18]。这些包之所以受到关注,是因为它们是最成熟的,Python是大学数学和统计学教学中使用最多的编程语言之一。本实验是基于真实世界收集的数据来研究治疗性触摸护理技术[17]。通过先验分布和二项似然函数的层次模型进行分析。比较了两种工具的执行时间和样品质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of software packages for performing Bayesian inference
In this paper, we compare three state-of-the-art Python packages for Bayesian inference: JAGS [14], Stan [5], and PyMC3 [18]. These packages are in focus because they are the most mature, and Python is among the most utilized programming languages for teaching mathematics and statistics in colleges [13]. The experiment is based on real-world data collected for investigating the therapeutic touch nursing technique [17]. It is analyzed through a hierarchical model with prior beta distribution and binomial likelihood function. The tools are compared by execution time and sample quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信