差分进化算法收敛性的概率分析

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
R. Knobloch, J. Mlynek
{"title":"差分进化算法收敛性的概率分析","authors":"R. Knobloch, J. Mlynek","doi":"10.14311/nnw.2020.30.017","DOIUrl":null,"url":null,"abstract":"Differential evolution algorithms represent an efficient framework to tackle complicated optimization problems with many variables and involved constraints. Nevertheless, the classic differential evolution algorithms in general do not ensure the convergence to the global minimum of the cost function. Therefore, the authors of the article designed a modification of these algorithms that guarantees the global convergence in the asymptotic and probabilistic sense. The modification consists in adding a certain ratio of random individuals to each generation formed by the algorithm. The random individuals limit the premature convergence to the local minimum and contribute to more thorough exploration of the search space. This article concentrates specifically on the role of random individuals in the identification of the global minimum of the cost function. Besides, the paper also contains some useful estimates of the probability of finding the global minimum of the corresponding cost function.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"249-263"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PROBABILISTIC ANALYSIS OF THE CONVERGENCE OF THE DIFFERENTIAL EVOLUTION ALGORITHM\",\"authors\":\"R. Knobloch, J. Mlynek\",\"doi\":\"10.14311/nnw.2020.30.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential evolution algorithms represent an efficient framework to tackle complicated optimization problems with many variables and involved constraints. Nevertheless, the classic differential evolution algorithms in general do not ensure the convergence to the global minimum of the cost function. Therefore, the authors of the article designed a modification of these algorithms that guarantees the global convergence in the asymptotic and probabilistic sense. The modification consists in adding a certain ratio of random individuals to each generation formed by the algorithm. The random individuals limit the premature convergence to the local minimum and contribute to more thorough exploration of the search space. This article concentrates specifically on the role of random individuals in the identification of the global minimum of the cost function. Besides, the paper also contains some useful estimates of the probability of finding the global minimum of the corresponding cost function.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"30 1\",\"pages\":\"249-263\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2020.30.017\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2020.30.017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

差分进化算法为解决具有多变量和约束的复杂优化问题提供了一种有效的框架。然而,经典的微分进化算法一般不能保证收敛到代价函数的全局最小值。因此,本文的作者设计了一种改进的算法,以保证在渐近和概率意义上的全局收敛。这种修改是在算法形成的每一代中加入一定比例的随机个体。随机个体限制了过早收敛到局部最小值,有助于更深入地探索搜索空间。本文特别关注随机个体在识别成本函数的全局最小值中的作用。此外,本文还包含了找到相应代价函数的全局最小值的概率的一些有用的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROBABILISTIC ANALYSIS OF THE CONVERGENCE OF THE DIFFERENTIAL EVOLUTION ALGORITHM
Differential evolution algorithms represent an efficient framework to tackle complicated optimization problems with many variables and involved constraints. Nevertheless, the classic differential evolution algorithms in general do not ensure the convergence to the global minimum of the cost function. Therefore, the authors of the article designed a modification of these algorithms that guarantees the global convergence in the asymptotic and probabilistic sense. The modification consists in adding a certain ratio of random individuals to each generation formed by the algorithm. The random individuals limit the premature convergence to the local minimum and contribute to more thorough exploration of the search space. This article concentrates specifically on the role of random individuals in the identification of the global minimum of the cost function. Besides, the paper also contains some useful estimates of the probability of finding the global minimum of the corresponding cost function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信