{"title":"求解置换流水车间调度问题的离散蝴蝶启发优化算法","authors":"X. Qi, Yuan Zhonghu, Xiaowei Han, Shixin Liu","doi":"10.14311/nnw.2020.30.015","DOIUrl":null,"url":null,"abstract":"Permutation Flow-Shop Scheduling Problem (PFSP) which exists in many manufacturing systems is a classic combinatorial optimization problem. Studies have shown that the PFSP including more than three machines belongs to the NP-hard problems and is difficult to solve. Based on a new bio-inspired algorithm – Artificial Butterfly Optimization (ABO) algorithm, this paper presents a Discrete Artificial Butterfly Optimization (DABO) algorithm to find the permutation that gives the smallest completion time or the smallest total flow time. The performance of the proposed algorithm is tested on well-known benchmark suites of Car, Reeves and Taillard. The experimental results show that the proposed algorithm is able to provide very promising and competitive results on most benchmark functions. The DABO algorithm is then employed for one production optimization problem.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"211-229"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A discrete butterfly-inspired optimization algorithm for solving Permutation Flow-Shop scheduling Problems\",\"authors\":\"X. Qi, Yuan Zhonghu, Xiaowei Han, Shixin Liu\",\"doi\":\"10.14311/nnw.2020.30.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permutation Flow-Shop Scheduling Problem (PFSP) which exists in many manufacturing systems is a classic combinatorial optimization problem. Studies have shown that the PFSP including more than three machines belongs to the NP-hard problems and is difficult to solve. Based on a new bio-inspired algorithm – Artificial Butterfly Optimization (ABO) algorithm, this paper presents a Discrete Artificial Butterfly Optimization (DABO) algorithm to find the permutation that gives the smallest completion time or the smallest total flow time. The performance of the proposed algorithm is tested on well-known benchmark suites of Car, Reeves and Taillard. The experimental results show that the proposed algorithm is able to provide very promising and competitive results on most benchmark functions. The DABO algorithm is then employed for one production optimization problem.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"30 1\",\"pages\":\"211-229\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2020.30.015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2020.30.015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A discrete butterfly-inspired optimization algorithm for solving Permutation Flow-Shop scheduling Problems
Permutation Flow-Shop Scheduling Problem (PFSP) which exists in many manufacturing systems is a classic combinatorial optimization problem. Studies have shown that the PFSP including more than three machines belongs to the NP-hard problems and is difficult to solve. Based on a new bio-inspired algorithm – Artificial Butterfly Optimization (ABO) algorithm, this paper presents a Discrete Artificial Butterfly Optimization (DABO) algorithm to find the permutation that gives the smallest completion time or the smallest total flow time. The performance of the proposed algorithm is tested on well-known benchmark suites of Car, Reeves and Taillard. The experimental results show that the proposed algorithm is able to provide very promising and competitive results on most benchmark functions. The DABO algorithm is then employed for one production optimization problem.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.