量子信息学与软系统建模

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Svítek
{"title":"量子信息学与软系统建模","authors":"M. Svítek","doi":"10.14311/nnw.2020.30.010","DOIUrl":null,"url":null,"abstract":"This paper elaborates on the area of physical information analogies and introduces new features such as the distance between wave probabilistic functions or sets of new information quantities such as strength, strength moment, strength potential energy and generalized charge. New parameters are used to define the rules for a quantum node. The knowledge cycle, which is equivalent to the Otto thermodynamic cycle, is adopted for modeling of the soft systems together with its static and dynamic information stability. Looking at the closed knowledge cycle, the evolutionary field equivalent to a magnetic field is therefore determined.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"30 1","pages":"133-144"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum informatics and soft systems modeling\",\"authors\":\"M. Svítek\",\"doi\":\"10.14311/nnw.2020.30.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper elaborates on the area of physical information analogies and introduces new features such as the distance between wave probabilistic functions or sets of new information quantities such as strength, strength moment, strength potential energy and generalized charge. New parameters are used to define the rules for a quantum node. The knowledge cycle, which is equivalent to the Otto thermodynamic cycle, is adopted for modeling of the soft systems together with its static and dynamic information stability. Looking at the closed knowledge cycle, the evolutionary field equivalent to a magnetic field is therefore determined.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"30 1\",\"pages\":\"133-144\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2020.30.010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2020.30.010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

本文详细阐述了物理信息类比领域,并引入了波概率函数之间的距离等新特征或强度、强度矩、强度势能和广义电荷等新信息量的集合。新参数用于定义量子节点的规则。采用知识循环(相当于奥托热力学循环)及其静态和动态信息稳定性对软系统进行建模。观察封闭的知识循环,就确定了相当于磁场的进化场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum informatics and soft systems modeling
This paper elaborates on the area of physical information analogies and introduces new features such as the distance between wave probabilistic functions or sets of new information quantities such as strength, strength moment, strength potential energy and generalized charge. New parameters are used to define the rules for a quantum node. The knowledge cycle, which is equivalent to the Otto thermodynamic cycle, is adopted for modeling of the soft systems together with its static and dynamic information stability. Looking at the closed knowledge cycle, the evolutionary field equivalent to a magnetic field is therefore determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信