Hiam Alquran, Ali Mohammad Alqudah, Isam Abu-Qasmieh, Alaa Al-Badarneh, S. Almashaqbeh
{"title":"使用高阶谱估计和深度学习技术的心电分类","authors":"Hiam Alquran, Ali Mohammad Alqudah, Isam Abu-Qasmieh, Alaa Al-Badarneh, S. Almashaqbeh","doi":"10.14311/nnw.2019.29.014","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) is one of the most important and effective tools in clinical routine to assess the cardiac arrhythmias. In this research higherorder spectral estimations, bispectrum and third-order cumulants, are evaluated, saved, and pre-trained using convolutional neural networks (CNN) algorithm. CNN is transferred in this study to carry out automatic ECG arrhythmia diagnostics after employing the higher-order spectral algorithms. Transfer learning strategies are applied on pre-trained convolutional neural network, namely AlexNet and GoogleNet, to carry out the final classification. Five different arrhythmias of ECG waveform are chosen from the MIT-BIH arrhythmia database to evaluate the proposed approach. The main contribution of this study is to utilize the pre-trained convolutional neural networks with a combination of higher-order spectral estimations of arrhythmias ECG signal to implement a reliable and applicable deep learning classification technique. The Highest average accuracy obtained is 97.8 % when using third cumulants and GoogleNet. As is evident from these results, the proposed approach is an efficient automatic cardiac arrhythmia classification method and provides a reliable recognition system based on well-established CNN architectures instead of training a deep CNN from scratch.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"ECG CLASSIFICATION USING HIGHER ORDER SPECTRAL ESTIMATION AND DEEP LEARNING TECHNIQUES\",\"authors\":\"Hiam Alquran, Ali Mohammad Alqudah, Isam Abu-Qasmieh, Alaa Al-Badarneh, S. Almashaqbeh\",\"doi\":\"10.14311/nnw.2019.29.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) is one of the most important and effective tools in clinical routine to assess the cardiac arrhythmias. In this research higherorder spectral estimations, bispectrum and third-order cumulants, are evaluated, saved, and pre-trained using convolutional neural networks (CNN) algorithm. CNN is transferred in this study to carry out automatic ECG arrhythmia diagnostics after employing the higher-order spectral algorithms. Transfer learning strategies are applied on pre-trained convolutional neural network, namely AlexNet and GoogleNet, to carry out the final classification. Five different arrhythmias of ECG waveform are chosen from the MIT-BIH arrhythmia database to evaluate the proposed approach. The main contribution of this study is to utilize the pre-trained convolutional neural networks with a combination of higher-order spectral estimations of arrhythmias ECG signal to implement a reliable and applicable deep learning classification technique. The Highest average accuracy obtained is 97.8 % when using third cumulants and GoogleNet. As is evident from these results, the proposed approach is an efficient automatic cardiac arrhythmia classification method and provides a reliable recognition system based on well-established CNN architectures instead of training a deep CNN from scratch.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2019.29.014\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/nnw.2019.29.014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ECG CLASSIFICATION USING HIGHER ORDER SPECTRAL ESTIMATION AND DEEP LEARNING TECHNIQUES
Electrocardiogram (ECG) is one of the most important and effective tools in clinical routine to assess the cardiac arrhythmias. In this research higherorder spectral estimations, bispectrum and third-order cumulants, are evaluated, saved, and pre-trained using convolutional neural networks (CNN) algorithm. CNN is transferred in this study to carry out automatic ECG arrhythmia diagnostics after employing the higher-order spectral algorithms. Transfer learning strategies are applied on pre-trained convolutional neural network, namely AlexNet and GoogleNet, to carry out the final classification. Five different arrhythmias of ECG waveform are chosen from the MIT-BIH arrhythmia database to evaluate the proposed approach. The main contribution of this study is to utilize the pre-trained convolutional neural networks with a combination of higher-order spectral estimations of arrhythmias ECG signal to implement a reliable and applicable deep learning classification technique. The Highest average accuracy obtained is 97.8 % when using third cumulants and GoogleNet. As is evident from these results, the proposed approach is an efficient automatic cardiac arrhythmia classification method and provides a reliable recognition system based on well-established CNN architectures instead of training a deep CNN from scratch.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.