深猪:分类孟加拉语孤立字母数字符号的混合模型

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Sharif, M. Mahboob
{"title":"深猪:分类孟加拉语孤立字母数字符号的混合模型","authors":"S. Sharif, M. Mahboob","doi":"10.14311/NNW.2019.29.009","DOIUrl":null,"url":null,"abstract":"Bangla is known to be the second most widely used script in the South Asian region. Despite its wide usage, a complete study with all available Bangla handwritten image classes is still due. This work proposes a hybrid model to classify all available handwritten image classes and unifying the existing benchmark datasets. The feasibility of the different handcrafted features in the hybrid model also has been demonstrated. Moreover, the proposed hybrid model obtain a maximum accuracy of 89.91 % in validation phase with a total of 259 Bangla alpha-numerical image classes. With the same number of image classes, the proposed hybrid model shows a testing accuracy of 89.28 % on 15,175 testing samples. The comparison results demonstrate that the proposed hybrid-HOG model can outperform the existing state-of-the-art classification models in Bangla handwritten alpha-numerical image classification. The code will be available on https://github.com/sharif-apu/hybrid-259.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DEEP HOG: A HYBRID MODEL TO CLASSIFY BANGLA ISOLATED ALPHA-NUMERICAL SYMBOLS\",\"authors\":\"S. Sharif, M. Mahboob\",\"doi\":\"10.14311/NNW.2019.29.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bangla is known to be the second most widely used script in the South Asian region. Despite its wide usage, a complete study with all available Bangla handwritten image classes is still due. This work proposes a hybrid model to classify all available handwritten image classes and unifying the existing benchmark datasets. The feasibility of the different handcrafted features in the hybrid model also has been demonstrated. Moreover, the proposed hybrid model obtain a maximum accuracy of 89.91 % in validation phase with a total of 259 Bangla alpha-numerical image classes. With the same number of image classes, the proposed hybrid model shows a testing accuracy of 89.28 % on 15,175 testing samples. The comparison results demonstrate that the proposed hybrid-HOG model can outperform the existing state-of-the-art classification models in Bangla handwritten alpha-numerical image classification. The code will be available on https://github.com/sharif-apu/hybrid-259.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14311/NNW.2019.29.009\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14311/NNW.2019.29.009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

孟加拉语是南亚地区使用第二广泛的文字。尽管它的广泛使用,一个完整的研究与所有可用的孟加拉手写图像类仍然是到期。本文提出了一种混合模型来对所有可用的手写图像进行分类,并统一现有的基准数据集。此外,还验证了不同手工特征在混合模型中的可行性。此外,该混合模型在验证阶段获得了89.91%的最高准确率,共有259个孟加拉语alpha-数值图像类。在图像分类数相同的情况下,该混合模型在15,175个测试样本上的测试准确率达到89.28%。对比结果表明,本文提出的混合hog模型在孟加拉语手写字母数字图像分类中优于现有的最先进的分类模型。代码可在https://github.com/sharif-apu/hybrid-259上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEEP HOG: A HYBRID MODEL TO CLASSIFY BANGLA ISOLATED ALPHA-NUMERICAL SYMBOLS
Bangla is known to be the second most widely used script in the South Asian region. Despite its wide usage, a complete study with all available Bangla handwritten image classes is still due. This work proposes a hybrid model to classify all available handwritten image classes and unifying the existing benchmark datasets. The feasibility of the different handcrafted features in the hybrid model also has been demonstrated. Moreover, the proposed hybrid model obtain a maximum accuracy of 89.91 % in validation phase with a total of 259 Bangla alpha-numerical image classes. With the same number of image classes, the proposed hybrid model shows a testing accuracy of 89.28 % on 15,175 testing samples. The comparison results demonstrate that the proposed hybrid-HOG model can outperform the existing state-of-the-art classification models in Bangla handwritten alpha-numerical image classification. The code will be available on https://github.com/sharif-apu/hybrid-259.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信