{"title":"水生甲烷水合物工业发展技术分析综述","authors":"I. Zezekalo, V. Kobolev, O. Lukin, A. Safronov","doi":"10.15407/gpimo2022.02.003","DOIUrl":null,"url":null,"abstract":"Methane hydrates are one of the most powerful reserves of unconventional sources of hydrocarbons. This is clearly evidenced by the forecast estimates of world volumes of methane in the form of gas hydrates, which many times exceed the total resources of traditional natural gas. In the foreseeable future, natural methane hydrates should significantly increase the current energy balance of natural hydrocarbon fuel resources. Progress in their study can be ensured by the dialectical unity of theoretical and experimental research, focused mainly on thermodynamics, kinetics and their physical properties, as well as on the development and testing of technologies for methane production from gas hydrate deposits. Existing methods of developing gas hydrates involve their preliminary dissociation into gas and water. At the same time, the deposit depressurization method is considered the most promising. However, there is still no commercially attractive technology for the development of gas hydrates. The article presents an overview of gas hydrate research in the world, provides an analysis of prospective methods of their development, summarizes the advantages and disadvantages of current research and industrial attempts to extract methane from aqua deposits of gas hydrates, and evaluates the prospects of various technologies. Currently known examples of research and industrial development of gas hydrate deposits have demonstrated a number of problems. However, encouraging results were obtained. The analysis of processes in the oil and gas production industry shows that profitable industrial production of natural gas from gas hydrate deposits will be possible after an effective breakthrough technology appears on the market.","PeriodicalId":33769,"journal":{"name":"Geologiia i poleznye iskopaemye mirovogo okeana","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical review of technologies of the industrial development of aquatic methanohydrates\",\"authors\":\"I. Zezekalo, V. Kobolev, O. Lukin, A. Safronov\",\"doi\":\"10.15407/gpimo2022.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methane hydrates are one of the most powerful reserves of unconventional sources of hydrocarbons. This is clearly evidenced by the forecast estimates of world volumes of methane in the form of gas hydrates, which many times exceed the total resources of traditional natural gas. In the foreseeable future, natural methane hydrates should significantly increase the current energy balance of natural hydrocarbon fuel resources. Progress in their study can be ensured by the dialectical unity of theoretical and experimental research, focused mainly on thermodynamics, kinetics and their physical properties, as well as on the development and testing of technologies for methane production from gas hydrate deposits. Existing methods of developing gas hydrates involve their preliminary dissociation into gas and water. At the same time, the deposit depressurization method is considered the most promising. However, there is still no commercially attractive technology for the development of gas hydrates. The article presents an overview of gas hydrate research in the world, provides an analysis of prospective methods of their development, summarizes the advantages and disadvantages of current research and industrial attempts to extract methane from aqua deposits of gas hydrates, and evaluates the prospects of various technologies. Currently known examples of research and industrial development of gas hydrate deposits have demonstrated a number of problems. However, encouraging results were obtained. The analysis of processes in the oil and gas production industry shows that profitable industrial production of natural gas from gas hydrate deposits will be possible after an effective breakthrough technology appears on the market.\",\"PeriodicalId\":33769,\"journal\":{\"name\":\"Geologiia i poleznye iskopaemye mirovogo okeana\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologiia i poleznye iskopaemye mirovogo okeana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/gpimo2022.02.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologiia i poleznye iskopaemye mirovogo okeana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/gpimo2022.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical review of technologies of the industrial development of aquatic methanohydrates
Methane hydrates are one of the most powerful reserves of unconventional sources of hydrocarbons. This is clearly evidenced by the forecast estimates of world volumes of methane in the form of gas hydrates, which many times exceed the total resources of traditional natural gas. In the foreseeable future, natural methane hydrates should significantly increase the current energy balance of natural hydrocarbon fuel resources. Progress in their study can be ensured by the dialectical unity of theoretical and experimental research, focused mainly on thermodynamics, kinetics and their physical properties, as well as on the development and testing of technologies for methane production from gas hydrate deposits. Existing methods of developing gas hydrates involve their preliminary dissociation into gas and water. At the same time, the deposit depressurization method is considered the most promising. However, there is still no commercially attractive technology for the development of gas hydrates. The article presents an overview of gas hydrate research in the world, provides an analysis of prospective methods of their development, summarizes the advantages and disadvantages of current research and industrial attempts to extract methane from aqua deposits of gas hydrates, and evaluates the prospects of various technologies. Currently known examples of research and industrial development of gas hydrate deposits have demonstrated a number of problems. However, encouraging results were obtained. The analysis of processes in the oil and gas production industry shows that profitable industrial production of natural gas from gas hydrate deposits will be possible after an effective breakthrough technology appears on the market.